\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{relation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{relations}{}\paragraph*{{Relations}}\label{relations} [[!include relations - contents]] \hypertarget{relations_2}{}\section*{{Relations}}\label{relations_2} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{DefinitionGeneralCase}{General case}\dotfill \pageref*{DefinitionGeneralCase} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{morphisms}{Morphisms}\dotfill \pageref*{morphisms} \linebreak \noindent\hyperlink{binary_relations}{Binary relations}\dotfill \pageref*{binary_relations} \linebreak \noindent\hyperlink{kinds_of_binary_relations}{Kinds of binary relations}\dotfill \pageref*{kinds_of_binary_relations} \linebreak \noindent\hyperlink{The2PosetOfBinaryRelations}{The $2$-poset of binary relations}\dotfill \pageref*{The2PosetOfBinaryRelations} \linebreak \noindent\hyperlink{endorel}{The quasitopos of endorelations}\dotfill \pageref*{endorel} \linebreak \noindent\hyperlink{relation_closures_as_reflexive_subcategories_of_}{Relation closures as reflexive subcategories of $EndoRel$}\dotfill \pageref*{relation_closures_as_reflexive_subcategories_of_} \linebreak \noindent\hyperlink{Generalization}{Generalisation}\dotfill \pageref*{Generalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{relation} is the extension of a \emph{[[predicate]]}. That is, if you have a statement whose [[truth value]] may depend on some [[variables]], then you get a relation that consists of those instantiations of the variables that make the statement [[true]]. Equivalently, you can think of a relation as a [[function]] whose [[target]] is the set of truth values. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{DefinitionGeneralCase}{}\subsubsection*{{General case}}\label{DefinitionGeneralCase} \begin{defn} \label{}\hypertarget{}{} Given a [[family of sets|family]] $(A_i)_{i: I}$ of [[sets]], a \textbf{relation} on that family is a [[subset]] $R$ of the [[cartesian product]] $\prod_{i: I} A_i$. Equivalently, this is a [[function]] from $\prod_{i: I} A_i$ to the set $\TV$ of [[truth values]] (because $\TV$ is the [[subobject classifier]] in [[Set]]). Also equivalently, this is a [[monomorphism]] in/[[subobject]] of the [[cartesian product]] \begin{displaymath} R \hookrightarrow \prod_{i \colon I} A_i \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} For $I$ the 2-element set (a \emph{binary relation}) this is in particular a binary [[correspondence]] \begin{displaymath} \itexarray{ && R \\ & \swarrow && \searrow \\ A_1 && && A_1 } \,. \end{displaymath} Hence relations are precisely the [[(-1)-truncated]] [[correspondences]]. This identification induces a natural notion of [[composition]] of relations from the composition in the [[category of correspondences]], see below at \emph{\hyperlink{The2PosetOfBinaryRelations}{The 2-poset of binary relations}}. Formulated this way, the notion of relation generalizes to [[categories]] other than [[Set]] and to [[higher category theory]]. For more on this see at \emph{\hyperlink{Generalization}{Generalizations}} below. \end{remark} \hypertarget{special_cases}{}\subsubsection*{{Special cases}}\label{special_cases} A \textbf{nullary relation} is a relation on the empty family of sets. This is the same as a [[truth value]]. A \textbf{unary relation on $A$} is a relation on the singleton family $(A)$. This is the same as a [[subset]] of $A$. A \textbf{binary relation on $A$ and $B$} is a relation on the family $(A,B)$, that is a subset of $A \times B$. This is also called a \textbf{relation from $A$ to $B$}, especially in the context of the $2$-category [[Rel]] described below, or sometimes called a \textbf{heterogenous relation}. A \textbf{binary relation on $A$} is a relation on $(A,A)$, that is a relation from $A$ to itself. This is sometimes called a \textbf{homogenous relation} on $A$, simply a \textbf{relation on $A$}, or just an \textbf{endorelation} with its set implicit as a property if not explicitly mentioned. An \textbf{$n$-ary relation} on $A$ is a relation on a family of $n$ copies of $A$, that is a subset of $A^n$. For a binary relation, one often uses a symbol such as $\sim$ and writes $a \sim b$ instead of $(a,b) \in \sim$. Actually, even when a relation is given by a letter such as $R$, one often sees $a R b$ instead of $(a,b) \in R$, although now that does not look so good. \hypertarget{morphisms}{}\subsection*{{Morphisms}}\label{morphisms} If $A$ and $B$ are each sets equipped with a relation, then what makes a [[function]] $f: A \to B$ a \emph{morphism} of sets so equipped? There are really two ways to do this, shown below. (We will write these as if each set is equipped with a binary relation $\sim$, but any fixed arity would work.) \begin{itemize}% \item $f$ \textbf{preserves} the relation if $x \sim y \;\Rightarrow\; f(x) \sim f(y)$ always; \item \emph{f} \textbf{reflects} the relation if $x \sim y \;\Leftarrow\; f(x) \sim f(y)$ always. \end{itemize} Now, if $f$ is a [[bijection]], then it preserves the relation if and only if its inverse reflects it, so clearly an [[isomorphism]] of relation-equipped sets should do both. What about a mere morphism? In general, it's more natural to require only preservation; these are the morphisms you get if you consider a set with a relation as a models of a [[algebraic theory|finite-limit theory]] or a simply [[directed graph]]. But in some contexts, particularly when dealing only with [[irreflexive relation]]s, we instead require (only) that a morphism reflect the relation. Sometimes an even stricter condition is imposed, as for [[well-order]]s. But even in these cases, the definition of isomorphism comes out the same. \hypertarget{binary_relations}{}\subsection*{{Binary relations}}\label{binary_relations} Binary relations are especially widely used. \hypertarget{kinds_of_binary_relations}{}\subsubsection*{{Kinds of binary relations}}\label{kinds_of_binary_relations} Special kinds of relations from $A$ to $B$ include: \begin{itemize}% \item [[functional relations]], \item [[entire relations]], \item [[one-to-one relation]]s, \item [[onto relation]]s. \end{itemize} Combinations of the above properties of binary relations produce: \begin{itemize}% \item [[functions]], \item [[partial functions]], \item [[injections]], \item [[surjections]], \item [[bijections]]. \end{itemize} Special kinds of binary relations on $A$ (so from $A$ to itself) additionally include: \begin{itemize}% \item [[reflexive relation|reflexive]] and [[irreflexive relation|irreflexive]] relations; \item [[symmetric relation|symmetric]], [[antisymmetric relation|antisymmetric]], and [[asymmetric relation|asymmetric]] relations; \item [[transitive relations]] and [[comparisons]]; \item left and right [[euclidean relations]]; \item [[total relation|total]] and [[connected relation|connected]] relations; \item [[extensional relation|extensional]] and [[well-founded relation|well-founded]] relations. \end{itemize} Combinations of the above properties of binary relations produce: \begin{itemize}% \item [[equivalence relations]], \item [[partial equivalence relations]], \item [[apartness relations]], \item the various kinds of [[orders]] (which see). \end{itemize} \hypertarget{The2PosetOfBinaryRelations}{}\subsubsection*{{The $2$-poset of binary relations}}\label{The2PosetOfBinaryRelations} Binary relations form a $2$-[[2-category|category]] (in fact a $2$-[[2-poset|poset]]) [[Rel]], which is the basic example of an [[allegory]]. The [[objects]] are [[sets]], the [[morphisms]] from $A$ to $B$ are the binary relations on $A$ and $B$, and there is a [[2-morphism]] from $R$ to $S$ (both from $A$ to $B$) if $R$ implies $S$ (that is, when $(a,b) \in R$, then $(a,b) \in S$). The interesting definition is [[composition]] \begin{defn} \label{CompositionOfRelations}\hypertarget{CompositionOfRelations}{} If $R$ is a relation from $A$ to $B$ and $S$ is a relation from $B$ to $C$, then their \emph{composite relation} -- written $S \circ R$ or $R;S$ -- from $A$ to $C$ is defined as follows: \begin{displaymath} (a,c) \in R;S \;\Leftrightarrow\; \exists b: B,\; (a,b) \in R \;\wedge\; (b,c) \in S. \end{displaymath} The identity morphism is given by [[equality]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[composition]] operation of relation from def. \ref{CompositionOfRelations} is induced by the composition of the underlying [[correspondences]], followed by [[(-1)-truncated|(-1)-truncation]]. \end{remark} The special properties of the kinds of binary relations listed earlier can all be described in terms internal to [[Rel]]; most of them make sense in any [[allegory]]. Irreflexive and asymmetric relations are most useful if the allegory's [[hom-object|hom-poset]]s have [[bottom]] elements, and linear relations require this. Comparisons require the hom-posets to have finite [[union|unions]], and well-founded relations require some sort of higher-order structure. As a [[function]] may be seen as a functional, entire relation, so the category [[Set]] of sets and functions is a [[subcategory]] of [[Rel]] (in fact a [[replete subcategory|replete]] and locally [[full subcategory|full]] sub-$2$-category). \hypertarget{endorel}{}\subsubsection*{{The quasitopos of endorelations}}\label{endorel} Endorelations on sets are the objects of the [[quasitopos]] \textbf{$EndoRel$} or \textbf{$Bin$}. It is a [[reflective subcategory]] of [[Quiv]] the [[category of presheaves|presheaf topos]] of quivers and its morphisms are quiver morphisms. Endorelations are the [[separated presheaf|separated presheaves]] for the [[double negation\#in\_topos\_theory|double negation topology]] on $Quiv$. ``Separated'' here translates to a quiver having at most one arc between pairs of verticies. The [[reflective subcategory|reflector]] $Quiv \to EndoRel$ collapses parallel arcs together. Such quivers might also be called \textbf{singular} or \textbf{simple} though sometimes ``simple'' also means ``no loops''. \hypertarget{relation_closures_as_reflexive_subcategories_of_}{}\paragraph*{{Relation closures as reflexive subcategories of $EndoRel$}}\label{relation_closures_as_reflexive_subcategories_of_} All of the sub-types of endorelations with positive conditions ([[reflexive relation|reflexive]], [[symmetric relation|symmetric]], [[transitive relations|transitive]], and left and right [[euclidean relations|euclidean]]) and their combinations have an associated [[Moore closure|closure]] that can produce one from an arbitrary relation. Such a closure [[completion|completes]] a relation by adding the least number of arcs such that the conditions are satisfied. Within $EndoRel$ these closures are reflectors that produce reflective subcategories. For example the \textbf{symmetric closure} $sym: EndoRel \to EndoSym$ will (possibly) enlarge a quiver that contains any arc $v_a \to v_b$ to one that also contains $v_b \to v_a$. The \textbf{transitive and reflexive closure} $transRef: EndoRel \to EndoTransRef$ produces a category which is isomorphic to [[preorder|PreOrd]] though its objects are the underlying quivers of the preorders which are the objects of $PreOrd$. In addition to being reflective, the categories from the \emph{symmetric}, \emph{reflexive}, and \emph{symmetric and reflexive} closures are also quasitoposes that can be [[quasitopos\#exampsep|directly defined]] through double negation separation. The \emph{symmetric and reflexive} closure ([[category of simple graphs|SimpGph]]) is also a [[quasitopos|Grothendieck quasitopos]]. On the other hand $PreOrd$ is not a quasitopos because it is not a [[regular category]]. \hypertarget{Generalization}{}\subsection*{{Generalisation}}\label{Generalization} Most of the preceding makes sense in any [[category]] with enough [[products]]; giving rise to [[internal relation|internal relations]], for instance \emph{[[congruences]]} in the case of internal equivalence relations. Probably the trickiest bit is the definition of [[composition]] of binary relations, so not every category with [[finite products]] has an [[allegory]] of relations. In fact, in a certain precise sense, a category has an allegory of relations if and only if it is [[regular category|regular]]. It can then be recovered from this allegory by looking at the functional entire relations. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[graph]] \item [[logical relation]] \end{itemize} [[!redirects relation]] [[!redirects relations]] [[!redirects relation theory]] [[!redirects theory of relations]] [[!redirects nullary relation]] [[!redirects nullary relations]] [[!redirects unary relation]] [[!redirects unary relations]] [[!redirects binary relation]] [[!redirects binary relations]] \end{document}