\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{relative homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_singular_homology}{In singular homology}\dotfill \pageref*{in_singular_homology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{LongExactSequences}{Long exact sequences}\dotfill \pageref*{LongExactSequences} \linebreak \noindent\hyperlink{Excision}{Excision}\dotfill \pageref*{Excision} \linebreak \noindent\hyperlink{HomotopyInvariance}{Homotopy invariance}\dotfill \pageref*{HomotopyInvariance} \linebreak \noindent\hyperlink{RelationToQuotientTopologicalSpaces}{Relation to reduced homology of quotient topological spaces}\dotfill \pageref*{RelationToQuotientTopologicalSpaces} \linebreak \noindent\hyperlink{RelationToReducedHomology}{Relation to reduced homology}\dotfill \pageref*{RelationToReducedHomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{basic_examples}{Basic examples}\dotfill \pageref*{basic_examples} \linebreak \noindent\hyperlink{detecting_homology_isomorphisms}{Detecting homology isomorphisms}\dotfill \pageref*{detecting_homology_isomorphisms} \linebreak \noindent\hyperlink{RelativeHomologyOfCWComplexes}{Relative homology of CW-complexes}\dotfill \pageref*{RelativeHomologyOfCWComplexes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_singular_homology}{}\subsubsection*{{In singular homology}}\label{in_singular_homology} Let $X$ be a [[topological space]] and $A \hookrightarrow X$ a [[subspace]]. Write $C_\bullet(X)$ for the [[chain complex]] of [[singular homology]] on $X$ and $C_\bullet(A) \hookrightarrow C_\bullet(X)$ for the [[chain map]] induced by the subspace inclusion. \begin{defn} \label{}\hypertarget{}{} The [[cokernel]] of this inclusion, hence the [[quotient]] $C_\bullet(X)/C_\bullet(A)$ of $C_\bullet(X)$ by the [[image]] of $C_\bullet(A)$ under the inclusion, is the \textbf{chain complex of $A$-relative singular chains}. \begin{itemize}% \item A [[boundary]] in this quotient is called an \textbf{$A$-relative singular boundary}, \item a [[cycle]] is called an \textbf{$A$-relative singular cycle}. \item The [[chain homology]] of the quotient is the \textbf{$A$-relative singular homology of $X$} \begin{displaymath} H_n(X , A)\coloneqq H_n(C_\bullet(X)/C_\bullet(A)) \,. \end{displaymath} \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} This means that a singular $(n+1)$-chain $c \in C_{n+1}(X)$ is an $A$-relative cycle if its [[boundary]] $\partial c \in C_{n}(X)$ is, while not necessarily 0, contained in the $n$-chains of $A$: $\partial c \in C_n(A) \hookrightarrow C_n(X)$. So it vanishes only ``up to contributions coming from $A$''. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{LongExactSequences}{}\subsubsection*{{Long exact sequences}}\label{LongExactSequences} \begin{prop} \label{RelativeHomologyLongExactSequence}\hypertarget{RelativeHomologyLongExactSequence}{} Let $A \stackrel{i}{\hookrightarrow} X$. The corresponding relative homology sits in a [[long exact sequence]] of the form \begin{displaymath} \cdots \to H_n(A) \stackrel{H_n(i)}{\to} H_n(X) \to H_n(X, A) \stackrel{\delta_{n-1}}{\to} H_{n-1}(A) \stackrel{H_{n-1}(i)}{\to} H_{n-1}(X) \to H_{n-1}(X, A) \to \cdots \,. \end{displaymath} The [[connecting homomorphism]] $\delta_{n} \colon H_{n+1}(X, A) \to H_n(A)$ sends an element $[c] \in H_{n+1}(X, A)$ represented by an $A$-relative cycle $c \in C_{n+1}(X)$, to the class represented by the [[boundary]] $\partial^X c \in C_n(A) \hookrightarrow C_n(X)$. \end{prop} \begin{proof} This is the \emph{[[homology long exact sequence]]} induced by the given [[short exact sequence]] $0 \to C_\bullet(A) \stackrel{i}{\hookrightarrow} C_\bullet(X) \to coker(i) \simeq C_\bullet(X)/C_\bullet(A) \to 0$ of chain complexes. \end{proof} \begin{prop} \label{RelativeTripleHomologyLongExactSequence}\hypertarget{RelativeTripleHomologyLongExactSequence}{} Let $B \hookrightarrow A \hookrightarrow X$ be a sequence of two inclusions. Then there is a [[long exact sequence]] of relative homology groups of the form \begin{displaymath} \cdots \to H_n(A , B) \to H_n(X , B) \to H_n(X , A ) \to H_{n-1}(A , B) \to \cdots \,. \end{displaymath} \end{prop} \begin{proof} Observe that we have a (degreewise) [[short exact sequence]] of chain complexes \begin{displaymath} 0 \to C_\bullet(A)/C_\bullet(B) \to C_\bullet(X)/C_\bullet/B) \to C_\bullet(X)/C_\bullet(A) \to 0 \,. \end{displaymath} The corresponding [[homology long exact sequence]] is the long exact sequence in question. \end{proof} \hypertarget{Excision}{}\subsubsection*{{Excision}}\label{Excision} Let $Z \hookrightarrow A \hookrightarrow X$ be a sequence of [[topological subspace]] inclusions such that the [[closure]] $\bar Z$ of $Z$ is still contained in the [[interior]] $A^\circ$ of $A$: $\bar Z \hookrightarrow A^\circ$. \begin{prop} \label{ExcisionA}\hypertarget{ExcisionA}{} In the above situation, the inclusion $(X-Z, A-Z) \hookrightarrow (X,A)$ induces [[isomorphism]] in relative singular homology groups \begin{displaymath} H_n(X-Z, A-Z) \stackrel{\simeq}{\to} H_n(X,A) \end{displaymath} for all $n \in \mathbb{N}$. \end{prop} Let $A,B \hookrightarrow X$ be two [[topological subspaces]] such that their [[interior]] is a [[cover]] $A^\circ \coprod B^\circ \to X$ of $X$. \begin{prop} \label{ExcisionB}\hypertarget{ExcisionB}{} In the above situation, the inclusion $(B, A \cap B) \hookrightarrow (X,A)$ induces [[isomorphisms]] in relative singular homology groups \begin{displaymath} H_n(B, A \cap B) \stackrel{\simeq}{\to} H_n(X,A) \end{displaymath} for all $n \in \mathbb{N}$. \end{prop} A proof is spelled out in (\hyperlink{Hatcher}{Hatcher, from p. 128 on}). \begin{remark} \label{}\hypertarget{}{} These two propositions are equivalent to each other. To see this identify $B = X - Z$. \end{remark} \hypertarget{HomotopyInvariance}{}\subsubsection*{{Homotopy invariance}}\label{HomotopyInvariance} \begin{defn} \label{HomotopyInvariance}\hypertarget{HomotopyInvariance}{} Relative homology is homotopy invariant in both arguments. \end{defn} (\ldots{}) \hypertarget{RelationToQuotientTopologicalSpaces}{}\subsubsection*{{Relation to reduced homology of quotient topological spaces}}\label{RelationToQuotientTopologicalSpaces} \begin{defn} \label{GoodPair}\hypertarget{GoodPair}{} A [[topological subspace]] inclusion $A \hookrightarrow X$ is called a \textbf{good pair} if \begin{enumerate}% \item $A$ is [[closed subset|closed]] inside $X$; \item $A$ has an [[neighbourhood]] in $X$ which is a [[deformation retract]] of $A$. \end{enumerate} \end{defn} \begin{example} \label{}\hypertarget{}{} For $X$ a [[CW complex]], the inclusion of any subcomplex $A \hookrightarrow X$ is a good pair (called a \emph{[[CW-pair]]} $(X,A)$). \end{example} This is discussed at \emph{\href{CW+complex#Subcomplexes}{CW complex -- Subcomplexes}}. \begin{prop} \label{HomologyOfQuotientSpace}\hypertarget{HomologyOfQuotientSpace}{} If $A \hookrightarrow X$ is a [[topological subspace]] inclusion which is \emph{good} in the sense of def. \ref{GoodPair}, then the $A$-relative singular homology of $X$ coincides with the [[reduced singular homology]] of the [[quotient space]] $X/A$: \begin{displaymath} H_n(X , A) \simeq \tilde H_n(X/A) \,. \end{displaymath} \end{prop} For instance (\hyperlink{Hatcher}{Hatcher, prop. 2.22}). \begin{proof} By assumption we can find a [[neighbourhood]] $A \stackrel{j}{\to} U \hookrightarrow X$ such that $A \hookrightarrow U$ has a [[deformation retract]] and hence in particular is a [[homotopy equivalence]] and so induces also isomorphisms on all [[singular homology]] groups. It follows in particular that for all $n \in \mathbb{N}$ the canonical morphism $H_n(X,A) \stackrel{H_n(id,j)}{\to} H_n(X,U)$ is an [[isomorphism]], by prop. \ref{HomotopyInvariance}. Given such $U$ we have an evident [[commuting diagram]] of pairs of [[topological spaces]] \begin{displaymath} \itexarray{ (X,A) &\stackrel{(id,j)}{\to}& (X,U) &\leftarrow& (X-A, U - A) \\ \downarrow && \downarrow && \downarrow^{\mathrlap{\simeq}} \\ (X/A, A/A) &\stackrel{(id,j/A)}{\to}& (X/A, U/A) &\leftarrow& (X/A - A/A, U/A - A/A) } \,. \end{displaymath} Here the right vertical morphism is in fact a [[homeomorphism]]. Applying relative singular homology to this diagram yields for each $n \in \mathbb{N}$ the [[commuting diagram]] of abelian groups \begin{displaymath} \itexarray{ H_n(X,A) &\underoverset{\simeq}{H_n(id,j)}{\to}& H_n(X,U) &\stackrel{\simeq}{\leftarrow}& H_n(X-A, U - A) \\ \downarrow && \downarrow && \downarrow^{\mathrlap{\simeq}} \\ H_n(X/A, A/A) &\underoverset{\simeq}{H_n(id,j/A)}{\to}& H_n(X/A, U/A) &\stackrel{\simeq}{\leftarrow}& H_n(X/A - A/A, U/A - A/A) } \,. \end{displaymath} Here the left horizontal morphisms are the above isomorphims induced from the deformation retract. The right horizontal morphisms are isomorphisms by prop. \ref{ExcisionA} and the right vertical morphism is an isomorphism since it is induced by a homeomorphism. Hence the left vertical morphism is an isomorphism ([[2-out-of-3]] for isomorphisms). \end{proof} \hypertarget{RelationToReducedHomology}{}\subsubsection*{{Relation to reduced homology}}\label{RelationToReducedHomology} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[inhabited set|inhabited]] [[topological space]] and let $x \colon * \hookrightarrow X$ any point. Then the relative singular homology $H_n(X , *)$ is isomorphic to the absolute [[reduced singular homology]] $\tilde H_n(X)$ of $X$ \begin{displaymath} H_n(X , *) \simeq \tilde H_n(X) \,. \end{displaymath} \end{prop} \begin{proof} This is the special case of prop. \ref{HomologyOfQuotientSpace} for $A$ a point. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{basic_examples}{}\subsubsection*{{Basic examples}}\label{basic_examples} \begin{example} \label{}\hypertarget{}{} The [[reduced singular homology]] of the $n$-[[sphere]] $S^{n}$ equals the $S^{n-1}$-relative homology of the $n$-[[disk]] with respect to the canonical [[boundary]] inclusion $S^{n-1} \hookrightarrow D^n$: for all $n \in \mathbb{N}$ \begin{displaymath} \tilde H_\bullet(S^n) \simeq H_\bullet(D^n, S^{n-1}) \,. \end{displaymath} \end{example} \begin{proof} The $n$-[[sphere]] is [[homeomorphism|homeomorphic]] to the $n$-[[disk]] with its entire [[boundary]] identified with a point: \begin{displaymath} S^n \simeq D^n/S^{n-1} \,. \end{displaymath} Moreover the boundary inclusion is evidently a \emph{good pair} in the sense of def. \ref{GoodPair}. Therefore the example follows with prop. \ref{HomologyOfQuotientSpace}. \end{proof} \hypertarget{detecting_homology_isomorphisms}{}\subsubsection*{{Detecting homology isomorphisms}}\label{detecting_homology_isomorphisms} \begin{example} \label{}\hypertarget{}{} If an inclusion $A \hookrightarrow X$ is such that all relative homology vanishes, $H_\bullet(X , A) \simeq 0$, then the inclusion induces isomorphisms on all singular homology groups. \end{example} \begin{proof} Under the given assumotion the long exact sequence in prop. \ref{RelativeHomologyLongExactSequence} secomposes into short exact pieces of the form \begin{displaymath} 0 \to H_n(A) \to H_n(X) \to 0 \,. \end{displaymath} Exactness says that the middle morphism here is an [[isomorphism]]. \end{proof} \hypertarget{RelativeHomologyOfCWComplexes}{}\subsubsection*{{Relative homology of CW-complexes}}\label{RelativeHomologyOfCWComplexes} Let $X$ be a [[CW-complex]] and write \begin{displaymath} X_0 \hookrightarrow X_1 \hookrightarrow X_2 \hookrightarrow \cdots \hookrightarrow X \end{displaymath} for its [[filtered topological space]]-structure with $X_{n+1}$ the topological space obtained from $X_n$ by gluing on $(n+1)$-cells. \begin{prop} \label{}\hypertarget{}{} The relative singular homology of the filtering degrees is \begin{displaymath} H_n(X_k , X_{k-1}) \simeq \left\{ \itexarray{ \mathbb{Z}[Cells(X)_n] & if\; k = n \\ 0 & otherwise } \right. \,, \end{displaymath} where $Cells(X)_n \in Set$ denotes the set of $n$-cells of $X$ and $\mathbb{Z}[Cells(X)_n]$ denotes the [[free abelian group]] on this set. \end{prop} For instance (\hyperlink{Hatcher}{Hatcher, lemma 2.34}). \begin{proof} The inclusion $X_{k-1} \hookrightarrow X_k$ is clearly a \emph{good pair} in the sense of def. \ref{GoodPair}. The quotient $X_k/X_{k-1}$ is by definition of CW-complexes a [[wedge sum]] of $k$-[[spheres]], one for each element in $kCell$. Therefore by prop. \ref{HomologyOfQuotientSpace} we have an isomorphism $H_n(X_k , X_{k-1}) \simeq \tilde H_n( X_k / X_{k-1})$ with the [[reduced homology]] of this wedge sum. The statement then follows by the respect of reduced homology for wedge sums as discussed at \emph{\href{reduced+homology#RelationToWedgeSums}{Reduced homology - Respect for wedge sums}}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[relative cohomology]] \item [[cellular homology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook account for relative singular homology is section 2.1 of \begin{itemize}% \item [[Allen Hatcher]], \emph{\href{http://www.math.cornell.edu/~hatcher/AT/ATpage.html}{Algebraic Topology}} \end{itemize} [[!redirects relative singular homology]] \end{document}