\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{relativistic particle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{covariant_phase_space}{Covariant phase space}\dotfill \pageref*{covariant_phase_space} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{relativistic particle} in [[physics]] is a model for the dynamics of a single [[brane|particle]] that is propagating in a [[spacetime]] subject to [[force]]s such as [[gravity]] and (if it is charged) the [[electromagnetic field]]. The generalization to [[supergeometry]] is the [[superparticle]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{relativistic particle} is described by the [[sigma-model]] whose \begin{itemize}% \item [[target space]] is a [[spacetime]] $(X,g)$, where the [[pseudo-Riemannian metric]] $g$ -- or rather the [[Levi-Civita connection]] $\nabla$ that it induces on the [[tangent bundle]] $T X$ -- encodes the background field of [[gravity]] acting on the particle; \item [[worldvolume]] is the [[real line]] $\Sigma = \mathbb{R}$ or the [[circle]] $\Sigma = S^1$, the \emph{[[worldline]]}; \item [[background gauge field]] is [[connection on a bundle|connection]] $\nabla$ on a [[circle group]]-[[principal bundle]] over $X$, encoding a field of [[electromagnetism]] acting by [[Lorentz force]] on the particle; \item [[configuration space]] is the [[quotient]] \begin{displaymath} Conf := C^\infty(\Sigma, X)// Diff(\Sigma) \end{displaymath} of the space (naturally a [[diffeological space]]) of [[smooth function]]s $\Sigma \to X$ (``trajectories''); \item the exponentiated [[action functional]] is for given parameters $m \in \mathbb{R}$ (the particle's [[mass]]) and $q \in \mathbb{R}$ (the particle's [[charge]]) \begin{displaymath} \exp(i S(-)) : [\gamma] \mapsto \exp( i m \int dvol(\gamma^* g)) \;\; hol(\nabla,\gamma) \,, \end{displaymath} where the first terms is the integral of the [[volume form]] of the pullback of the background metric, and where the second term is the [[holonomy]] of the [[circle n-bundle with connection|circle bundle with connection]] around $\gamma$. In the case that the underlying [[circle]]-[[principal bundle]] is trivial, so that the [[connection on a bundle|connection]] is given by a [[differential forms|1-form]] $A \in \Omega^1(X)$, the [[action functional]] is \begin{displaymath} \begin{aligned} S : [\gamma] \mapsto & S_{kin}([\gamma]) + S_{gauge}([\gamma]) \\ & = \int m dvol(\gamma^* g) + \int q \gamma^* A \end{aligned} \,, \end{displaymath} where the first summand is the \emph{kinetic action} and the second the \emph{gauge interaction} term. \end{itemize} The above action functional is called the [[Nambu-Goto action]] in dimension 1. Alternatively (and mandatorily for vanishing [[mass]] parameter), the kinetic action is replaced by the corresponding [[Polyakov action]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{covariant_phase_space}{}\subsubsection*{{Covariant phase space}}\label{covariant_phase_space} We determine the [[covariant phase space]] of the theory: the space of solutions to the [[equations of motion]] and the [[presymplectic structure]]. We assume for simplicity that the class of the background circle bundle is trivial, so that the connection is equivalently given by a 1-form $A \in \Omega^1(X)$. Write $F = d A$ for its [[curvature]] 2-form: the [[field strength]] of the [[electromagnetic field]]. \begin{prop} \label{}\hypertarget{}{} The [[variational calculus|variation]] of the gauge interaction term is \begin{displaymath} \delta \int_\Sigma \gamma^* A = - \int_\Sigma F(\dot \gamma, \delta \gamma) \,. \end{displaymath} \end{prop} \begin{proof} Let $\mathbb{R}^d \stackrel{\simeq}{\to} U \hookrightarrow X$ be a local [[coordinate patch]] with coordinates $\{x^\mu\}$ and assume that $\gamma$ takes values in $U$ (or at least that its variation is supported there, which we can assume without restriction of generality). Then the variation is given by is \begin{displaymath} \begin{aligned} \delta \int_\Sigma \gamma^* A & = \delta \int_\Sigma A_\mu(\gamma) \dot \gamma^\mu d \tau \\ & = \int_\Sigma \left( (\partial_{\nu} A_\mu)(\gamma) \dot \gamma^\mu - \frac{d}{d\tau} (A_\nu(\gamma)) \right) \delta \gamma^\nu d \tau \\ & = \int_\Sigma \left( (\partial_{\nu} A_\mu)(\gamma) \dot \gamma^\mu - (\partial_\mu A_\nu)(\gamma)) \dot \gamma^\mu \right) \delta \gamma^\nu d\tau \end{aligned} \,. \end{displaymath} \end{proof} The variation of the kinetic terms is slightly subtle due to the square root in \begin{displaymath} dvol(\gamma^* g) = \sqrt{g(\dot \gamma, \dot \gamma)} d\tau \,. \end{displaymath} To deal with this, we first look at variations of trajectories in a small region where $g(\dot \gamma, \dot \gamma)$ is non-zero. For such we can always find a [[diffeomorphism]] $\Sigma \stackrel{\simeq }{\to} \Sigma$ such that this term is constantly $= 1$ in this region (recall that configurations are diffeomorphism classes of smooth [[curve]]s, so we may apply such a diffeomorphism at will to compute the variation). \begin{prop} \label{}\hypertarget{}{} With the above choice of diffeomorphism gauge, the equations of motion are \begin{displaymath} g(\nabla_{\dot \gamma} \dot \gamma / {\vert \dot \gamma}\vert ,-) = \iota_{\dot \gamma} F \,, \end{displaymath} where $\nabla$ is the [[covariant derivative]] with respect to the [[Levi-Civita connection]] of the metric $g$. \end{prop} \begin{proof} Computing as before in local coordinates and parameterization such that $g(\dot \gamma, \dot \gamma) = 1$, the variation of the kinetic terms is \begin{displaymath} \begin{aligned} \delta \int_\Sigma dvol(\gamma^* g) & = \delta \int_\Sigma \sqrt{g(\dot \gamma, \dot \gamma)} d\tau \\ & = \int_\Sigma \left( \frac{1}{2}(\partial_\mu g_{\nu \lambda}) \dot \gamma^\nu \dot \gamma^\lambda - \frac{d}{d\tau}(g_{\mu \nu} \dot \gamma^\nu) \right) \delta \gamma^\mu d \tau \\ & = \int_\Sigma \left( \frac{1}{2}(\partial_\mu g_{\nu \lambda}) \dot \gamma^\nu \dot \gamma^\lambda - 2 (g_{\mu\nu}\ddot \gamma^\nu + (\partial_\lambda g_{\mu\nu}) \dot \gamma^\nu \dot \gamma^\lambda) \right) \delta \gamma^\mu d \tau \\ & = - \int_\Sigma g_{\mu \mu}( \ddot \gamma^\nu + \Gamma^\nu{}_{\alpha \beta} \dot \gamma^\alpha \dot \gamma^\beta ) \delta \gamma^\mu \\ & = - \int_\Sigma g_{\mu \mu}( \nabla_{\dot \gamma} \dot \gamma^\nu ) \delta \gamma^\mu \\ & = -\int_\Sigma g(\nabla_{\dot \gamma} \dot \gamma, \delta \gamma) \end{aligned} \,. \end{displaymath} (Here $\Gamma^\cdot{}_{\cdot \cdot}$ are the [[Christoffel symbols]].) This gives the equations of motion as claimed. \end{proof} \begin{remark} \label{}\hypertarget{}{} The [[norm]] of the tangent vector along a physical trajectory is preserved: \begin{displaymath} \begin{aligned} \frac{d}{d \tau} \sqrt{g(\dot \gamma, \dot \gamma)} & \propto 2 \frac{d}{d \tau} g(\nabla_{\dot \gamma} \dot \gamma, \dot \gamma) \\ & \propto F(\dot \gamma, \dot \gamma) \\ & 0 \end{aligned} \,. \end{displaymath} Therefore if the assumption $g(\dot \gamma, \dot \gamma) \neq 0$ is satisfied at one instant, is is so everywhere along the curve. \end{remark} \begin{remark} \label{}\hypertarget{}{} For vanishing [[background gauge field]] strength, $F = 0$, the equations of motion \begin{displaymath} \nabla_{\dot \gamma} \dot \gamma = 0 \end{displaymath} express the [[parallel transport]] of the tangent vector along a physical trajectory. This identifies these trajectories with the [[geodesics]] of $X$. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sigma model]], [[brane]] \begin{itemize}% \item [[particle]], \textbf{relativistic particle}, [[non-relativistic particle]], [[spinning particle]], [[superparticle]] \item [[string]], [[spinning string]], [[superstring]] \item [[membrane]] \end{itemize} \item [[relativistic field theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Giulio Ruffini, \emph{Four approaches to quantization of the relativistic particle} (\href{http://arxiv.org/abs/gr-qc/9806058}{arXiv:gr-qc/9806058}) \end{itemize} Discussion in terms of [[BV-formalism]] includes \begin{itemize}% \item Jean M. L. Fisch and [[Marc Henneaux]], \emph{Antibracket---antifield formalism for constrained hamiltonian systems} (\href{http://dx.doi.org/10.1016/0370-2693%2889%2990292-X}{doi}) \item [[Alberto Cattaneo]], Michele Schiavina, \emph{On time} (\href{http://arxiv.org/abs/1607.02412}{arXiv:1607.02412}) \end{itemize} [[!redirects relativistic particles]] [[!redirects quantum relativistic particle]] [[!redirects quantum relativistic particles]] \end{document}