\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{renormalization group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theories]] various concepts of ``renormalization groups'' describe the choices of [[renormalization|(``re''-)normalization]] and their behaviour under [[scaling transformations]] or choices of cutoffs. There are at least three different concepts referred to as ``the renormalization group'', only the first is in general really a [[group]]: \begin{enumerate}% \item the [[Stückelberg-Petermann renormalization group]] (\hyperlink{StueckelbergPetermann53}{Stückelberg-Petermann 53}, historically the origin of the concept) this is literally the [[group]] of \emph{re-normalizations}, whose elements relate any two given [[renormalization scheme|normalization schemes]] $\mathcal{S}$ and $\mathcal{S}'$ by [[precomposition]] with a transformation $\mathcal{Z}$ of the space of [[local observable|local]] [[interaction]] [[action functionals]]; \item [[renormalization group flow]], say along [[scaling transformations]] yielding the [[Gell-Mann-Low renormalization cocycle]] \item the [[Wilsonian RG]] of [[effective quantum field theories]] defined with a [[UV cutoff]]. \end{enumerate} (e.g. \hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09, p. 10}) In more detail: Let \begin{displaymath} vac \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}_{kin}, \Delta_H ) \end{displaymath} be a [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacuum]] (according to \href{S-matrix#VacuumFree}{this def.}) around which we consider [[interacting field theory|interacting]] [[perturbative QFT]]. Then a [[perturbative S-matrix]] scheme/[[renormalization scheme|(``re''-)normalization scheme]] around this vacuum (\href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}) is a function \begin{displaymath} \itexarray{ LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ]\langle g, j \rangle & \overset{\mathcal{S}_{vac}}{\longrightarrow} & PolyObs(E_{\text{BV-BRST}})_{mc}( ( \hbar ) )[ [ g, j ] ] \\ g S_{int} + j A &\mapsto& \mathcal{S}_{vac}(g S_{int} + j A) } \end{displaymath} from [[local observables]], regared as [[adiabatic switching|adiatically switched]] [[interaction]] [[action functionals]] to [[Wick algebra]]-elements $\mathcal{S}( g S_{int} + j A)$, encoding [[scattering amplitudes]] in the given vacuum $\mathbf{L}'$ for the given interaction $g S_{int} + j A$, with formal parameters adjoined as indicated. The \emph{[[Stückelberg-Petermann renormalization group]]} is a group of transformations \begin{displaymath} \itexarray{ LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g, j \rangle &\overset{Z}{\longrightarrow}& LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ]\langle g, j \rangle \\ g S_{int} + J A &\mapsto& \mathcal{Z}(g S_{int} + j A) } \end{displaymath} such that for $\mathcal{S}$ and $\mathcal{S}'$ two [[renormalization schemes|normalization schemes]]/[[S-matrix]] schemes, there is a unique $\mathcal{Z}$ relating them by [[precomposition]], in that \begin{equation} \mathcal{S}(g S_{int} + j A) \;=\; \mathcal{S}'\left( \mathcal{Z}(g S_{int} + j A) \right) \label{SMatricesRelatedBySPRenormalizationGroupElement}\end{equation} for all $g S_{int} + j A$. This is the \emph{[[main theorem of perturbative renormalization]]}. Hence this says that any two ways of choosing [[interactions]] at coincident interaction points are related by a re-definition of the original [[interaction]] $g S_{int} + j A$. Now it may happen that \begin{enumerate}% \item the [[free field]] [[vacuum]] $vac = vac(m)$ depends on a [[mass]] parameter, and with it the choice $\mathcal{S}_{vac(m)}$ of [[renormalization scheme|normalization scheme]], \item under [[scaling transformations]] on [[local observables]] $\sigma_\rho$ (\hyperlink{Duetsch18}{Dütsch 18, def. 3.19}) we have that with $\mathcal{S}_{vac(m)}$ a [[perturbative S-matrix]] scheme perturbing around $vac(m)$ also \begin{displaymath} \sigma_\rho \circ \left(\mathcal{S}_{vac(m/\rho)}\right) \circ \sigma_\rho^{-1} \end{displaymath} is a perturbative S-matrix around $L_{kin}(m)$. \end{enumerate} In this case the above statement of the [[main theorem of perturbative renormalization]] implies with \eqref{SMatricesRelatedBySPRenormalizationGroupElement} that there exists a unique transformation $\mathcal{Z}^m_\rho$ of the space of [[local observable|local]] [[interaction]] [[action functionals]] such that \begin{displaymath} \begin{aligned} & \sigma_\rho \circ \mathcal{S}_{vac(m/\rho)} \circ \sigma_\rho^{-1}( g S_{int} + j A ) \\ & = \mathcal{S}_{vac(m)}(\mathcal{Z}^m_\rho(g S_{int} + j A)) \end{aligned} \end{displaymath} for all $g S_{int} + j A$. These $\mathcal{Z}^m_\rho$ are the \emph{[[Gell-Mann-Low cocycle]]} elements. They do not actually form a [[group]], unless $m = 0$, but satisfy the relation \begin{displaymath} \mathcal{Z}^m_{\rho_1 \rho_2} \;=\; \mathcal{Z}^m_{\rho_1} \circ \left( \sigma_{\rho_1} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_2} \right) \end{displaymath} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09 (69)}, \hyperlink{Duetsch18}{Dütsch 18 (3.325)}) \begin{proof} From the definition we have \begin{displaymath} \begin{aligned} \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1 \rho_2} & = \sigma_{\rho_1} \circ \underset{ \mathcal{S}_{vac(m/\rho_1)} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} }{ \underbrace{ \sigma_{\rho_2} \circ \mathcal{S}_{vac(m/\rho_1\rho_2)} \circ \sigma_{\rho_2}^{-1} }} \circ \sigma_{\rho_1}^{-1} \\ & = \underset{ = \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1} \circ \sigma_{\rho_1} }{ \underbrace{ \sigma_{\rho_1} \circ \mathcal{S}_{vac(m/\rho_1)} \circ \overset{ = id }{ \overbrace{ \sigma_{\rho_1}^{-1} \circ \sigma_{\rho_1} } } }} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_1}^{-1} \\ & = \mathcal{S}_{vac(m)} \circ \mathcal{Z}^m_{\rho_1} \circ \sigma_{\rho_1} \circ \mathcal{Z}^{m/\rho_1}_{\rho_2} \circ \sigma_{\rho_1}^{-1} \end{aligned} \end{displaymath} To conclude, it is now sufficient to see that the perturbative S-matrix $S_{vac(m)}$, as a function form [[interaction]] [[Lagrangian densities]] to [[Wick algebra]]-elements, is an [[injective function]]. (\ldots{}) \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[renormalization]] \item [[renormalization group flow]] \item [[asymptotic safety]] \item [[cosmic Galois group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[Stückelberg-Petermann renormalization group]] is due to \begin{itemize}% \item [[Ernst Stückelberg]], [[André Petermann]], \emph{La normalisation des constantes dans la theorie des quanta}, Helv. Phys. Acta 26 (1953), 499–520 \end{itemize} The relation of the [[Stückelberg-Petermann renormalization group]] to [[renormalization group flow]] ([[Gell-Mann-Low renormalization cocycles]]) \begin{itemize}% \item [[Murray Gell-Mann]] and F. E. Low, \emph{Quantum Electrodynamics at Small Distances}, Phys. Rev. 95 (5) (1954), 1300–1312 (\href{http://www.fafnir.phyast.pitt.edu/py3765/GellManLow.pdf}{pdf}) \end{itemize} as well as to [[Wilsonian RG]] of [[effective quantum field theories]] is due to \begin{itemize}% \item [[Romeo Brunetti]], [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative Algebraic Quantum Field Theory and the Renormalization Groups}, Adv. Theor. Math. Physics 13 (2009), 1541-1599 (\href{https://arxiv.org/abs/0901.2038}{arXiv:0901.2038}) \item [[Michael Dütsch]], [[Klaus Fredenhagen]], [[Kai Keller]], [[Katarzyna Rejzner]], \emph{Dimensional Regularization in Position Space, and a Forest Formula for Epstein-Glaser Renormalization}, J. Math. Phy. 55(12), 122303 (2014) (\href{https://arxiv.org/abs/1311.5424}{arXiv:1311.5424}) \end{itemize} reviewed in \begin{itemize}% \item [[Michael Dütsch]], section 3.5.1 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} See also \begin{itemize}% \item Kiyoshi Higashijima, Kazuhiko Nishijima, \emph{Renormalization Groups of Gell-Mann and Low and of Callan and Symanzik}, Progress in theoretical physics, vol. 64, no. 6, December 1980 (\href{https://academic.oup.com/ptp/article-pdf/64/6/2179/5275368/64-6-2179.pdf}{pdf}) \item Assaf Shomer, \emph{A pedagogical explanation for the non-renormalizability of gravity} (\href{https://arxiv.org/abs/0709.3555}{arXiv:0709.3555}) \item Wikipedia \emph{\href{http://en.wikipedia.org/wiki/Renormalization_group}{Renormalization group}} \end{itemize} [[!redirects renormalization groups]] \end{document}