\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{renormalization group flow} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ScalingTransformationsRGFlow}{Scaling transformations}\dotfill \pageref*{ScalingTransformationsRGFlow} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]] the construction of the [[scattering matrix]] $\mathcal{S}$, hence of the [[interacting field algebra of observables]] for a given [[interaction]] $g S_{int}$ [[perturbation theory|perturbing]] around a given [[free field theory|free field]] [[vacuum]], involves choices of \emph{normalization} of [[time-ordered products]]/[[Feynman diagrams]] (traditionally called \emph{[[renormalization|``re''-normalizations]]}) encoding new [[interactions]] that appear where several of the original interaction vertices defined by $g S_{int}$ coincide. Whenever a [[group]] $RG$ [[action|acts]] on the space of [[observables]] of the theory such that [[conjugation]] by this action takes [[renormalization scheme|(``re''-)normalization schemes]] into each other, then these choices of [[renormalization|(``re''-)normalization]] are parameterized by -- or ``flow with'' -- the elements of $RG$. This is called \emph{renormalization group flow} (prop. \ref{FlowRenormalizationGroup} below); often called \emph{RG flow}, for short. The archetypical example here is the [[group]] $RG$ of [[scaling transformations]] on [[Minkowski spacetime]] (def. \ref{ScalingTransformations} below), which induces a [[renormalization group flow]] (prop. \ref{RGFlowScalingTransformations} below) due to the particular nature of the [[Wightman propagator]] resp. [[Feynman propagator]] on [[Minkowski spacetime]] (example \ref{ScalarFieldMassDimensionOnMinkowskiSpacetime} below). In this case the choice of [[renormalization|(``re''-)normalization]] hence ``flows with scale''. Now the \emph{[[main theorem of perturbative renormalization]] states that (if only the basic [[renormalization condition]] called ``field independence'' is satisfied) any two choices of [[renormalization scheme|(``re''-)normalization schemes]] $\mathcal{S}$ and $\mathcal{S}'$ are related by a unique [[interaction vertex redefinition]] $\mathcal{Z}$, as} \begin{displaymath} \mathcal{S}' = \mathcal{S} \circ \mathcal{Z} \,. \end{displaymath} Applied to a parameterization/flow of renormalization choices by a group $RG$ this hence induces an [[interaction vertex redefinition]] as a function of $RG$. One may think of the shape of the interaction vertices as fixed and only their ([[adiabatic switching|adiabatically switched]]) [[coupling constants]] as changing under such an [[interaction vertex redefinition]], and hence then one has [[coupling constants]] $g_j$ that are parameterized by elements $\rho$ of $RG$: \begin{displaymath} \mathcal{Z}_{\rho_{vac}}^\rho \;\colon\; \{g_j\} \mapsto \{g_j(\rho)\} \end{displaymath} This dependendence is called \emph{running of the coupling constants} under the renormalization group flow (def. \ref{CouplingRunning} below). One example of [[renormalization group flow]] is that induced by [[scaling transformations]] (prop. \ref{RGFlowScalingTransformations} below). This is the original and main example of the concept (\hyperlink{GellMannLow54}{Gell-Mann \& Low 54}) In this case the [[running of the coupling constants]] may be understood as expressing how ``more'' [[interactions]] (at higher energy/shorter [[wavelength]]) become visible (say to [[experiment]]) as the scale resolution is increased. In this case the dependence of the coupling $g_j(\rho)$ on the parameter $\rho$ happens to be [[differentiable function|differentiable]]; its [[logarithm|logarithmic]] [[derivative]] (denoted ``$\psi$'' in \hyperlink{GellMannLow54}{Gell-Mann \& Low 54}) is known as the \emph{[[beta function]]} (\hyperlink{Callan70}{Callan 70}, \hyperlink{Symanzik70}{Symanzik 70}): \begin{displaymath} \beta(g) \coloneqq \rho \frac{\partial g_j}{\partial \rho} \,. \end{displaymath} Notice that this is related to, but conceptually different from, \emph{[[Polchinski's flow equation]]} in the context of [[Wilsonian RG]]. The [[running of the coupling constants]] is not quite a [[representation]] of the [[renormalization group flow]], but it is a ``twisted'' representation, namely a [[group cocycle|group 1-cocycle]] (prop. \ref{CocycleRunningCoupling} below). For the case of [[scaling transformations]] this may be called the \emph{[[Gell-Mann-Low renormalization cocycle]]} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09}). For more see at \begin{itemize}% \item [[geometry of physics -- A first idea of quantum field theory]] the section \emph{\href{geometry+of+physics+--+A+first+idea+of+quantum+field+theory#Renormalization}{Renormalization}} \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{FlowRenormalizationGroup}\hypertarget{FlowRenormalizationGroup}{} \textbf{([[renormalization group flow]])} Let \begin{displaymath} vac \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H ) \end{displaymath} be a [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacuum]] (according to \href{S-matrix#VacuumFree}{this def.}) around which we consider [[interacting field theory|interacting]] [[perturbative QFT]]. Consider a [[group]] $RG$ equipped with an [[action]] on the [[Wick algebra]] of [[off-shell]] [[microcausal polynomial observables]] with formal parameters adjoined (as in \href{S-matrix#FormalParameters}{this def.}) \begin{displaymath} rg_{(-)} \;\colon\; RG \times PolyObs(E_{\text{BV-BRST}})_{mc}((\hbar))[ [ g, j ] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})_{mc}((\hbar))[ [ \hbar, g, j ] ] \,, \end{displaymath} hence for each $\rho \in RG$ a [[continuous linear map]] $rg_\rho$ which has an [[inverse]] $rg_\rho^{-1} \in RG$ and is a [[homomorphism]] of the [[Wick algebra]]-product (the [[star product]] $\star_H$ induced by the [[Wightman propagator]] of the given vauum $vac$) \begin{displaymath} rg_\rho( A_1 \star_H A_2 ) \;=\; rg_\rho(A_1) \star_H rg_\rho(A_2) \end{displaymath} such that the following conditions hold: \begin{enumerate}% \item the action preserves the subspace of [[off-shell]] polynomial [[local observables]], hence it [[restriction|restricts]] as \begin{displaymath} rg_{(-)} \;\colon\; RG \times LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ]\langle g,j\rangle \longrightarrow LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j ] ]\langle g,j\rangle \end{displaymath} \item the action respects the [[causal order]] of the spacetime support (\href{A+first+idea+of+quantum+field+theory#SpacetimeSupport}{this def.}) of local observables, in that for $O_1, O_2 \in LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]$ we have \begin{displaymath} \left( supp(O_1) \,{\vee\!\!\!\wedge}\, supp(O_2) \right) \phantom{A} \Rightarrow \phantom{A} \left( supp(rg_\rho(O_1)) \,{\vee\!\!\!\wedge}\, supp(rg_\rho(O_2)) \right) \end{displaymath} for all $\rho \in RG$. \end{enumerate} Then: The operation of [[conjugation]] by this action on [[observables]] induces an [[action]] on the [[set]] of [[S-matrix]] [[renormalization schemes]] (\href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}, \href{S-matrix#calSFunctionIsRenormalizationScheme}{this remark}), in that for \begin{displaymath} \mathcal{S} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar , g, j] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})( (\hbar) )[ [ g, j] ] \end{displaymath} a perturbative [[S-matrix scheme]] around the given [[free field theory|free field]] [[vacuum]] $vac$, also the [[composition|composite]] \begin{displaymath} \mathcal{S}^\rho \;\coloneqq\; rg_\rho \circ \mathcal{S} \circ rg_{\rho}^{-1} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar , g, j] ] \longrightarrow PolyObs(E_{\text{BV-BRST}})( (\hbar) )[ [ g, j] ] \end{displaymath} is an [[S-matrix]] scheme, for all $\rho \in RG$. More generally, let \begin{displaymath} vac_\rho \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}'_\rho, \Delta_{H,\rho} ) \end{displaymath} be a collection of [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacua]] parameterized by elements $\rho \in RG$, all with the same underlying [[field bundle]]; and consider $rg_\rho$ as above, except that it is not an [[automorphism]] of any [[Wick algebra]], but an [[isomorphism]] between the [[Wick algebra]]-structures on various vacua, in that \begin{equation} rg_{\rho}( A_1 \star_{H, \rho^{-1} \rho_{vac}} A_2 ) \;=\; rg_{\rho}(A_1) \star_{H, \rho_{vac}} rg_{\rho}(A_2) \label{IntertwiningWickProductsActionRG}\end{equation} for all $\rho, \rho_{vac} \in RG$ Then if \begin{displaymath} \{ \mathcal{S}_{\rho} \}_{\rho \in RG} \end{displaymath} is a collection of [[S-matrix schemes]], one around each of the [[gauge fixing|gauge fixed]] [[free field theory|free field]] [[vacua]] $vac_\rho$, it follows that for all pairs of group elements $\rho_{vac}, \rho \in RG$ the [[composition|composite]] \begin{equation} \mathcal{S}_{\rho_{vac}}^\rho \;\coloneqq\; rg_\rho \circ \mathcal{S}_{\rho^{-1}\rho_{vac}} \circ rg_\rho^{-1} \label{RGConjugateSmatrix}\end{equation} is an [[S-matrix scheme]] around the vacuum labeled by $\rho_{vac}$. Since therefore each element $\rho \in RG$ in the [[group]] $RG$ picks a different choice of [[renormalization|normalization]] of the [[S-matrix]] scheme around a given vacuum at $\rho_{vac}$, we call the assignment $\rho \mapsto \mathcal{S}_{\rho_{vac}}^{\rho}$ a \emph{[[renormalization group flow|re-normalization group flow]]}. \end{prop} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09, sections 4.2, 5.1}, \hyperlink{Duetsch18}{Dütsch 18, section 3.5.3}) \begin{proof} It is clear from the definition that each $\mathcal{S}^{\rho}_{\rho_{vac}}$ satisfies the axiom ``perturbation'' (in \href{S-matrix#LagrangianFieldTheoryPerturbativeScattering}{this def.}). In order to verify the axiom ``[[causal additivity]]'', observe, for convenience, that by \href{S-matrix#CausalFactorizationAlreadyImpliesSMatrix}{this prop.} it is sufficient to check [[causal factorization]]. So consider $O_1, O_2 \in LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ]\langle g,j\rangle$ two local observables whose spacetime support is in [[causal order]]. \begin{displaymath} supp(O_1) \;{\vee\!\!\!\wedge}\; supp(O_2) \,. \end{displaymath} We need to show that the \begin{displaymath} \mathcal{S}_{\rho_{vac}}^{\rho}(O_1 + O_2) = \mathcal{S}_{\rho_{vac}}^\rho(O_1) \star_{H,\rho_{vac}} \mathcal{S}_{vac_e}^\rho(O_2) \end{displaymath} for all $\rho, \rho_{vac} \in RG$. Using the defining properties of $rg_{(-)}$ and the [[causal factorization]] of $\mathcal{S}_{\rho^{-1}\rho_{vac}}$ we directly compute as follows: \begin{displaymath} \begin{aligned} \mathcal{S}_{\rho_{vac}}^\rho(O_1 + O_2) & = rg_\rho \circ \mathcal{S}_{\rho^{-1} \rho_{vac}} \circ rg_\rho^{-1}( O_1 + O_2 ) \\ & = rg_\rho \left( {\, \atop \,} \mathcal{S}_{\rho^{-1}\rho_{vac}} \left( rg_\rho^{-1}(O_1) + rg_\rho^{-1}(O_2) \right) {\, \atop \,} \right) \\ & = rg_\rho \left( {\, \atop \,} \left( \mathcal{S}_{\rho^{-1}\rho_{vac}}\left(rg_\rho^{-1}(O_1)\right) \right) \star_{H, \rho^{-1} \rho_{vac}} \left( \mathcal{S}_{ \rho^{-1} \rho_{vac} }\left(rg_\rho^{-1}(O_2)\right) \right) {\, \atop \,} \right) \\ & = rg_\rho \left( {\, \atop \,} \mathcal{S}_{\rho^{-1} \rho_{vac}}\left(rg_{\rho^{-1}}(O_1)\right) {\, \atop \,} \right) \star_{H, \rho_{vac}} rg_\rho \left( {\, \atop \,} \mathcal{S}_{\rho^{-1} \rho_{vac}}\left( rg_\rho^{-1}(O_2)\right) {\, \atop \,} \right) \\ & = \mathcal{S}^\rho_{\rho_{vac}}( O_1 ) \, \star_{H, \rho_{vac}} \, \mathcal{S}_{\rho_{vac}}^\rho(O_2) \,. \end{aligned} \end{displaymath} \end{proof} \begin{defn} \label{CouplingRunning}\hypertarget{CouplingRunning}{} \textbf{([[running coupling constants]])} Let \begin{displaymath} vac \coloneqq vac_e \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}', \Delta_H ) \end{displaymath} be a [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacuum]] (according to \href{S-matrix#VacuumFree}{this def.}) around which we consider [[interacting field theory|interacting]] [[perturbative QFT]], let $\mathcal{S}$ be an [[S-matrix]] scheme around this vacuum and let $rg_{(-)}$ be a [[renormalization group flow]] according to prop. \ref{FlowRenormalizationGroup}, such that each re-normalized [[S-matrix scheme]] $\mathcal{S}_{vac}^\rho$ satisfies the [[renormalization condition]] ``field independence''. Then by the [[main theorem of perturbative renormalization]] (\href{Stückelberg-Petermann+renormalization+group#AnyTwoSMatrixRenormalizationSchemesDifferByAUniqueVertexRedefinition}{this prop.}) there is for every [[pair]] $\rho_1, \rho_2 \in RG$ a unique [[interaction vertex redefinition]] \begin{displaymath} \mathcal{Z}_{\rho_{vac}}^{\rho} \;\colon\; LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ] \longrightarrow LocObs(E_{\text{BV-BRST}})[ [ \hbar, g, j] ] \end{displaymath} which relates the corresponding two [[S-matrix]] schemes via \begin{equation} \mathcal{S}_{\rho_{vac}}^{\rho} \;=\; \mathcal{S}_{\rho_{vac}} \circ \mathcal{Z}_{\rho_{vac}}^\rho \,. \label{SMatrixScemesRelatedByRunningFunction}\end{equation} If one thinks of an [[interaction]] vertex, hence a [[local observable]] $g S_{int}+ j A$, as specified by the ([[adiabatic switching|adiabatically switched]]) [[coupling constants]] $g_j \in C^\infty_{cp}(\Sigma)\langle g \rangle$ multiplying the corresponding [[interaction]] [[Lagrangian densities]] $\mathbf{L}_{int,j} \in \Omega^{p+1,0}_\Sigma(E_{\text{BV-BRST}})$ as \begin{displaymath} g S_{int} \;=\; \underset{j}{\sum} \tau_\Sigma \left( g_j \mathbf{L}_{int,j} \right) \end{displaymath} (where $\tau_\Sigma$ denotes [[transgression of variational differential forms]]) then $\mathcal{Z}_{\rho_1}^{\rho_2}$ exhibits a dependency of the ([[adiabatic switching|adiabatically switched]]) [[coupling constants]] $g_j$ of the [[renormalization group flow]] parameterized by $\rho$. The corresponding functions \begin{displaymath} \mathcal{Z}_{\rho_{vac}}^{\rho}(g S_{int}) \;\colon\; (g_j) \mapsto (g_j(\rho)) \end{displaymath} are then called \emph{[[running coupling constants]]}. \end{defn} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09, sections 4.2, 5.1}, \hyperlink{Duetsch18}{Dütsch 18, section 3.5.3}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{CocycleRunningCoupling}\hypertarget{CocycleRunningCoupling}{} \textbf{([[running coupling constants]] are [[group cocycle]] over [[renormalization group flow]])} Consider [[running coupling constants]] \begin{displaymath} \mathcal{Z}_{\rho_{vac}}^{\rho} \;\colon\; (g_j) \mapsto (g_j(\rho)) \end{displaymath} as in def. \ref{CouplingRunning}. Then for all $\rho_{vac}, \rho_1, \rho_2 \in RG$ the following equality is satisfied by the ``running functions'' \eqref{SMatrixScemesRelatedByRunningFunction}: \begin{displaymath} \mathcal{Z}_{\rho_{vac}}^{\rho_1 \rho_2} \;=\; \mathcal{Z}_{\rho_{vac}}^{\rho_1} \circ \left( \sigma_{\rho_1} \circ \mathcal{Z}_{\rho^{-1} \rho_{vac}}^{\rho_2} \circ \sigma_{\rho_1}^{-1} \right) \,. \end{displaymath} \end{prop} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09 (69)}, \hyperlink{Duetsch18}{Dütsch 18, (3.325)}) \begin{proof} Directly using the definitions, we compute as follows: \begin{displaymath} \begin{aligned} \mathcal{S}_{\rho_{vac}} \circ \mathcal{Z}_{\rho_{vac}}^{\rho_1 \rho_2} & = \mathcal{S}_{\rho_{vac}}^{\rho_1 \rho_2 } \\ & = \sigma_{\rho_1} \circ \underset{ = \mathcal{S}_{\rho_1^{-1} \rho_{vac}}^{\rho_2} = \mathcal{S}_{\rho_1^{-1} \rho_{vac}} \circ \mathcal{Z}_{\rho_1^{-1} \rho_vac}^{\rho_2} }{ \underbrace{ \sigma_{\rho_2} \circ \mathcal{S}_{\rho_2^{-1}\rho_1^{-1}\rho_{vac}} \circ \sigma_{\rho_2}^{-1} }} \circ \sigma_{\rho_1}^{-1} \\ & = \underset{ = \mathcal{S}_{\rho_{vac}} \circ \mathcal{Z}_{\rho_{vac}}^{\rho_1} \circ \sigma_{\rho_1} }{ \underbrace{ \sigma_{\rho_1} \circ \mathcal{S}_{\rho_1^{-1} \rho_{vac}} \circ \overset{ = id }{ \overbrace{ \sigma_{\rho_1}^{-1} \circ \sigma_{\rho_1} } } }} \circ \mathcal{Z}_{\rho_1^{-1} \rho_{vac}}^{\rho_2} \circ \sigma_{\rho_1}^{-1} \\ & = \mathcal{S}_{\rho_{vac}} \circ \mathcal{Z}_{\rho_{vac}}^{\rho_1} \circ \underbrace{ \sigma_{\rho_1} \circ \mathcal{Z}_{\rho_1^{-1} \rho_{vac}}^{\rho_2} \circ \sigma_{\rho_1}^{-1} } \end{aligned} \end{displaymath} This demonstrates the equation between vertex redefinitions to be shown after [[composition]] with an S-matrix scheme. But by the uniqueness-clause in the [[main theorem of perturbative renormalization]] the composition operation $\mathcal{S}_{\rho_{vac}} \circ (-)$ as a function from [[vertex redefinitions]] to S-matrix schemes is [[injective function|injective]]. This implies the equation itself. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ScalingTransformationsRGFlow}{}\subsubsection*{{Scaling transformations}}\label{ScalingTransformationsRGFlow} We discuss (prop. \ref{RGFlowScalingTransformations} below) that, if the field species involved have well-defined [[mass dimension]] (example \ref{ScalarFieldMassDimensionOnMinkowskiSpacetime} below) then [[scaling transformations]] on [[Minkowski spacetime]] (example \ref{ScalingTransformations} below) induce a [[renormalization group flow]] (def. \ref{FlowRenormalizationGroup}). This is the original and main example of [[renormalization group flows]] (\hyperlink{GellMannLow54}{Gell-Mann\& Low 54}). \begin{example} \label{ScalingTransformations}\hypertarget{ScalingTransformations}{} \textbf{([[scaling transformations]] and [[mass dimension]])} Let \begin{displaymath} E \overset{fb}{\longrightarrow} \Sigma \end{displaymath} be a [[field bundle]] which is a [[trivial vector bundle]] over [[Minkowski spacetime]] $\Sigma = \mathbb{R}^{p,1} \simeq_{\mathbb{R}} \mathbb{R}^{p+1}$. For $\rho \in (0,\infty) \subset \mathbb{R}$ a [[positive real number]], write \begin{displaymath} \itexarray{ \Sigma &\overset{\rho}{\longrightarrow}& \Sigma \\ x &\mapsto& \rho x } \end{displaymath} for the operation of multiplication by $\rho$ using the [[real vector space]]-[[structure]] of the [[Cartesian space]] $\mathbb{R}^{p+1}$ underlying [[Minkowski spacetime]]. By [[pullback of differential forms|pullback]] this acts on [[field histories]] ([[sections]] of the [[field bundle]]) via \begin{displaymath} \itexarray{ \Gamma_\Sigma(E) &\overset{\rho^\ast}{\longrightarrow}& \Gamma_\Sigma(E) \\ \Phi &\mapsto& \Phi(\rho(-)) } \,. \end{displaymath} Let then \begin{displaymath} \rho \mapsto vac_\rho \;\coloneqq\; (E_{\text{BV-BRST}}, \mathbf{L}'_{\rho}, \Delta_{H,\rho} ) \end{displaymath} be a 1-parameter collection of [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacua]] on that field bundle, according to \href{S-matrix#VacuumFree}{this def.}, and consider a decomposition into a set $Spec$ of field species (\href{S-matrix#VerticesAndFieldSpecies}{this def.}) such that for each $sp \in Spec$ the collection of [[Feynman propagators]] $\Delta_{F,\rho,sp}$ for that species \emph{scales homogeneously} in that there exists \begin{displaymath} dim(sp) \in \mathbb{R} \end{displaymath} such that for all $\rho$ we have (using [[generalized functions]]-notation) \begin{equation} \rho^{ 2 dim(sp) } \Delta_{F, 1/\rho, sp}( \rho x ) \;=\; \Delta_{F,sp, \rho = 1}(x) \,. \label{FeynmanPropagatorScalingBehaviour}\end{equation} Typically $\rho$ rescales a [[mass]] parameter, in which case $dim(sp)$ is also called the \emph{[[mass dimension]]} of the field species $sp$. Let finally \begin{displaymath} \itexarray{ PolyObs(E) & \overset{ \sigma_\rho }{\longrightarrow} & PolyObs(E) \\ \mathbf{\Phi}_{sp}^a(x) &\mapsto& \rho^{- dim(sp)} \mathbf{\Phi}^a( \rho^{-1} x ) } \end{displaymath} be the [[function]] on [[off-shell]] [[polynomial observables]] given on [[field observables]] $\mathbf{Phi}^a(x)$ by [[pullback of differential forms|pullback]] along $\rho^{-1}$ followed by multiplication by $\rho$ taken to the negative power of the [[mass dimension]], and extended from there to all [[polynomial observables]] as an [[associative algebra|algebra]] [[homomorphism]]. This constitutes an [[action]] of the [[group]] \begin{displaymath} RG \coloneqq \left( \mathbb{R}_+, \cdot \right) \end{displaymath} of [[positive real numbers]] (under [[multiplication]]) on [[polynomial observables]], called the group of \emph{[[scaling transformations]]} for the given choice of field species and [[mass]] parameters. \end{example} (\hyperlink{Duetsch18}{Dütsch 18, def. 3.19}) \begin{example} \label{ScalarFieldMassDimensionOnMinkowskiSpacetime}\hypertarget{ScalarFieldMassDimensionOnMinkowskiSpacetime}{} \textbf{([[mass dimension]] of [[scalar field]])} Consider the [[Feynman propagator]] $\Delta_{F,m}$ of the [[free field theory|free]] [[real scalar field]] on [[Minkowski spacetime]] $\Sigma = \mathbb{R}^{p,1}$ for [[mass]] parameter $m \in (0,\infty)$; a [[Green function]] for the [[Klein-Gordon equation]]. Let the group $RG \coloneqq (\mathbb{R}_+, \cdots)$ of [[scaling transformations]] $\rho \in \mathbb{R}_+$ on [[Minkowski spacetime]] (def. \ref{ScalingTransformations}) act on the mass parameter by inverse multiplication \begin{displaymath} (\rho , \Delta_{F,m}) \mapsto \Delta_{F,\rho^{-1}m}(\rho (-)) \,. \end{displaymath} Then we have \begin{displaymath} \Delta_{F,\rho^{-1}m}(\rho (-)) \;=\; \rho^{-(p+1) + 2} \Delta_{F,1}(x) \end{displaymath} and hence the corresponding [[mass dimension]] (def. \ref{ScalingTransformations}) of the [[real scalar field]] on $\mathbb{R}^{p,1}$ is \begin{displaymath} dim(\text{scalar field}) = (p+1)/2 - 1 \,. \end{displaymath} \end{example} \begin{proof} By (\href{Feynman+propagator#FeynmanPropagatorAsACauchyPrincipalvalue}{this prop.}) the [[Feynman propagator]] in question is given by the [[Cauchy principal value]]-formula (in [[generalized function]]-notation) \begin{displaymath} \begin{aligned} \Delta_{F,m}(x) & = \underset{ {\epsilon \in (0,\infty)} \atop {\epsilon \to 0} }{\lim} \frac{+i}{(2\pi)^{p+1}} \int \int_{-\infty}^\infty \frac{ e^{i k_\mu x^\mu} }{ - k_\mu k^\mu - \left( \tfrac{m c}{\hbar} \right)^2 \pm i \epsilon } \, d k_0 \, d^p \vec k \,. \end{aligned} \end{displaymath} By applying [[change of integration variables]] $k \mapsto \rho^{-1} k$ in the [[Fourier transform of distributions|Fourier transform]] this becomes \begin{displaymath} \begin{aligned} \Delta_{F,\rho^{-1}m}(\rho x) & = \underset{ {\epsilon \in (0,\infty)} \atop {\epsilon \to 0} }{\lim} \frac{+i}{(2\pi)^{p+1}} \int \int_{-\infty}^\infty \frac{ e^{i k_\mu \rho x^\mu} }{ - k_\mu k^\mu - \left( \rho^{-1} \tfrac{m c}{\hbar} \right)^2 \pm i \epsilon } \, d k_0 \, d^p \vec k \\ & = \rho^{-(p+1)} \underset{ {\epsilon \in (0,\infty)} \atop {\epsilon \to 0} }{\lim} \frac{+i}{(2\pi)^{p+1}} \int \int_{-\infty}^\infty \frac{ e^{i k_\mu x^\mu} }{ - \rho^{-2} k_\mu k^\mu - \rho^{-2} \left( \tfrac{m c}{\hbar} \right)^2 \pm i \epsilon } \, d k_0 \, d^p \vec k \\ & = \rho^{-(p+1)+2} \underset{ {\epsilon \in (0,\infty)} \atop {\epsilon \to 0} }{\lim} \frac{+i}{(2\pi)^{p+1}} \int \int_{-\infty}^\infty \frac{ e^{i k_\mu x^\mu} }{ - k_\mu k^\mu - \left( \tfrac{m c}{\hbar} \right)^2 \pm i \epsilon } \, d k_0 \, d^p \vec k \\ & = \rho^{-(p+1) + 2} \Delta_{F,m}(x) \end{aligned} \end{displaymath} \end{proof} \begin{prop} \label{RGFlowScalingTransformations}\hypertarget{RGFlowScalingTransformations}{} \textbf{([[scaling transformations]] are [[renormalization group flow]])} Let \begin{displaymath} vac \coloneqq vac_m \coloneqq (E_{\text{BV-BRST}}, \mathbf{L}', \Delta_{H,m}) \end{displaymath} be a [[relativistic field theory|relativistic]] [[free field theory|free]] [[vacua]] on that field bundle, according to \href{S-matrix#VacuumFree}{this def.} equipped with a decomposition into a set $Spec$ of field species (\href{S-matrix#VerticesAndFieldSpecies}{this def.}) such that for each $sp \in Spec$ the collection of [[Feynman propagators]] the corresponding field species has a well-defined [[mass dimension]] $dim(sp)$ (def. \ref{ScalingTransformations}) Then the [[action]] of the [[group]] $RG \coloneqq (\mathbb{R}_+, \cdot)$ of [[scaling transformations]] (def. \ref{ScalingTransformations}) is a [[renormalization group flow]] in the sense of \href{renormalization+group+flow#FlowRenormalizationGroup}{this prop.}. \end{prop} (\hyperlink{Duetsch18}{Dütsch 18, exercise 3.20}) \begin{proof} It is clear that rescaling preserves [[causal order]] and the [[renormalization condition]] of ``field indepencen''. The condition we need to check is that for $A_1, A_2 \in PolyObs(E_{\text{BV-BRST}})_{mc}[ [ \hbar, g, j] ]$ two [[microcausal polynomial observables]] we have for any $\rho, \rho_{vac} \in \mathbb{R}_+$ that \begin{displaymath} \sigma_\rho \left( A_1 \star_{H, \rho^{-1} \rho_{vac} c} A_2 \right) \;=\; \sigma_\rho(A_1) \star_{H,\rho_{vac}} \sigma_\rho(A_2) \,. \end{displaymath} By the assumption of decomposition into free field species $sp \in Spec$, it is sufficient to check this for each species $\Delta_{H,sp}$. Moreover, by the nature of the [[star product]] on [[polynomial observables]], which is given by iterated contractions with the [[Wightman propagator]], it is sufficient to check this for one such contraction. Observe that the scaling behaviour of the [[Wightman propagator]] $\Delta_{H,m}$ is the same as the behaviour \eqref{FeynmanPropagatorScalingBehaviour} of the correspponding [[Feynman propagator]]. With this we directly compute as follows: \begin{displaymath} \begin{aligned} \sigma_\rho (\mathbf{\Phi}(x)) \star_{F, \rho_{vac} m} \sigma_\rho (\mathbf{\Phi}(y) & = \rho^{-2 dim } \mathbf{\Phi}(\rho^{-1} x) \star_{F, \rho_{vac} m} \mathbf{\Phi}(\rho^{-1} y) \\ & = \rho^{-2 dim } \Delta_{F, \rho_{vac} m}(\rho^{-1}(x-y)) \\ & = \Delta_{F, \rho^{-1}\rho_{vac}m }(x,y) \mathbf{1} \\ & = rg_{\rho}\left( \Delta_{F, \rho^{-1}\rho_{vac}m }(x,y) \mathbf{1} \right) \\ & = rg_{\rho} \left( \mathbf{\Phi}(x) \star_{F, \rho^{-1} \rho_{vac} m} \mathbf{\Phi}(y) \right) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[gauge coupling unification]] \item [[threshold correction]] \item [[Wilsonian RG]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original informal discussion for RG-flow along [[scaling transformations]] is due to \begin{itemize}% \item [[Murray Gell-Mann]] and F. E. Low, \emph{Quantum Electrodynamics at Small Distances}, Phys. Rev. 95 (5) (1954), 1300–1312 (\href{http://www.fafnir.phyast.pitt.edu/py3765/GellManLow.pdf}{pdf}) \item [[Curtis Callan]], \emph{Broken Scale Invariance in Scalar Field Theory}, Phys. Rev. D 2, 1541, 1970 (\href{https://doi.org/10.1103/PhysRevD.2.1541}{doi:10.1103/PhysRevD.2.1541}) \item [[Kurt Symanzik]], \emph{Small distance behaviour in field theory and power counting}, Communications in Mathematical Physics. 18 (3): 227–246 (\href{https://doi.org/10.1007/BF01649434}{doi:10.1007/BF01649434}) \end{itemize} Formulation in the rigorous context of [[causal perturbation theory]]/[[pAQFT]], via the [[main theorem of perturbative renormalization]], is due to \begin{itemize}% \item [[Romeo Brunetti]], [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative Algebraic Quantum Field Theory and the Renormalization Groups}, Adv. Theor. Math. Physics 13 (2009), 1541-1599 (\href{https://arxiv.org/abs/0901.2038}{arXiv:0901.2038}) \end{itemize} reviewed in \begin{itemize}% \item [[Michael Dütsch]], section 3.5.3 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} In the context of [[factorization algebras]], this is given by the book [[Renormalization and Effective Field Theory]] [[!redirects renormalization group flows]] [[!redirects rg-flow]] [[!redirects rg-flows]] [[!redirects rg flow]] [[!redirects rg flows]] [[!redirects RG-flow]] [[!redirects RG-flows]] [[!redirects RG flow]] [[!redirects RG flows]] [[!redirects Gell-Mann-Low renormalization cocycle]] [[!redirects Gell-Mann-Low renormalization cocycles]] [[!redirects Gell-Mann-Low cocycle]] [[!redirects Gell-Mann-Low cocycles]] [[!redirects Gell-Mann-Low renormalization group]] [[!redirects Gell-Mann-Low renormalization groups]] [[!redirects mass dimension]] [[!redirects mass dimensions]] [[!redirects running coupling constant]] [[!redirects running coupling constants]] [[!redirects running of the coupling constant]] [[!redirects running of the coupling constants]] \end{document}