\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{representable functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_ordinary_category_theory}{In ordinary category theory}\dotfill \pageref*{in_ordinary_category_theory} \linebreak \noindent\hyperlink{in_enriched_category_theory}{In enriched category theory}\dotfill \pageref*{in_enriched_category_theory} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{limits}{Limits}\dotfill \pageref*{limits} \linebreak \noindent\hyperlink{products}{Products}\dotfill \pageref*{products} \linebreak \noindent\hyperlink{weighted_limits}{Weighted limits}\dotfill \pageref*{weighted_limits} \linebreak \noindent\hyperlink{exponential_objects}{Exponential objects}\dotfill \pageref*{exponential_objects} \linebreak \noindent\hyperlink{classifying_bundles}{Classifying bundles}\dotfill \pageref*{classifying_bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a [[locally small category]] $C$, a [[presheaf]] on $C$ or equivalently a [[functor]] \begin{displaymath} F: C^{op} \to Set \end{displaymath} on the [[opposite category]] of $C$ with values in [[Set]] is \textbf{representable} if it is [[natural isomorphism|naturally isomorphic]] to a [[hom-functor]] $h_X := \hom_C(-, X): C^{op} \to Set$, which sends an object $U \in C$ to the [[hom-set]] $Hom_C(U,X)$ in $C$ and which sends a [[morphism]] $\alpha : U' \to U$ in $C$ to the [[function]] which sends each morphism $U \to X$ to the composite $U' \stackrel{\alpha}{\to} U \to X$ If we picture $Hom_C(U,X)$ as strands of morphisms as above, then the morphism $\alpha:U'\to U$ serves to ``comb'' the strands back from $Hom_C(U,X)$ to $Hom_C(U',X)$, i.e. \begin{displaymath} h_X\alpha: Hom_C(U,X)\to Hom_C(U',X). \end{displaymath} The object $X$ is determined uniquely up to [[isomorphism]] in $C$, and is called a \textbf{representing object} for $F$. Representability is one of the most fundamental concepts of [[category theory]], with close ties to the notion of [[adjoint functor]] and to the [[Yoneda lemma]]. It is the crucial concept underlying the idea of [[universal property]]; thus for example crucial concepts such as ``[[limit]]'', ``[[colimit]]'', ``[[exponential object]]'', ``[[Kan extension]]'' and so on are naturally expressed in terms of representing objects. The concept permeates much of algebraic geometry and algebraic topology. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_ordinary_category_theory}{}\subsubsection*{{In ordinary category theory}}\label{in_ordinary_category_theory} For a functor $F: C^{op} \to Set$ (also called a [[presheaf]] on $C$), a \textbf{representation} of $F$ is a specified [[natural isomorphism]] \begin{displaymath} \theta: \hom_C(-, c) \stackrel{\sim}{\to} F \end{displaymath} By the [[Yoneda lemma]], any such transformation $\theta$ (isomorphism or not) is uniquely determined by an element $\xi \in F(c)$. As above, the object $c$ is called a \textbf{representing object} (or often, \textbf{universal object}) for $F$, and the element $\xi$ is called a \textbf{[[universal element]]} for $F$. Again, it follows from the [[Yoneda lemma]] that the pair $(c, \xi)$ is determined uniquely up to unique isomorphism. Following the proof of the Yoneda lemma, representability means precisely this: given any object $x$ of $C$ and any element $\alpha \in F(x)$, there exists a unique morphism $f: x \to c$ such that the function $F(f)$ carries the universal element $\xi \in F(c)$ to $\alpha \in F(x)$. Such a dry formulation fails to convey the remarkable power of this concept, which can really only be appreciated through the myriad examples which illustrate it. \hypertarget{in_enriched_category_theory}{}\subsubsection*{{In enriched category theory}}\label{in_enriched_category_theory} The above definition generalizes straightforwardly to [[enriched category theory]]. Let $V$ be a [[closed monoidal category]] and $C$ a $V$-[[enriched category]]. Then for every object $c \in C$ there is a $V$-[[enriched functor]] \begin{displaymath} C(c,-) : C \to V \end{displaymath} from $C$ to $V$ regarded canonically as a $V$-[[enriched category]]. This is defined \begin{itemize}% \item on objects by $C(c,-) : d \mapsto C(c,d) \in V$ \item on morphisms between $d$ and $d'$ by \end{itemize} \begin{displaymath} C(c,-)_{d,d'} : C(d,d') \to [C(c,d), C(c,d')] \,, \end{displaymath} being the [[adjunct]] of the composition morphism \begin{displaymath} \circ_{c,d,d'} : C(d,d') \otimes C(c,d) \to C(c,d') \,. \end{displaymath} A $V$-enriched functor $F : C \to V$ is \textbf{representable} if there is $c \in C$ and a $V$-[[enriched natural transformation]] $\eta : F \to C(c,-)$. If $V$ is [[symmetric monoidal category|symmetric monoidal]] one can form the [[opposite category]] $C^{op}$ and have the analogous definition for representable functors $F : C^{op} \to V$. \hypertarget{in_higher_category_theory}{}\subsubsection*{{In higher category theory}}\label{in_higher_category_theory} The notion of representable functors has its straightforward analogs also in [[higher category theory]]. \begin{itemize}% \item For [[2-category theory]] see \ldots{} . \item For [[(∞,1)-category theory]] theory see [[(∞,1)-presheaf]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The central point about examples of representable functors is: \emph{Representable functors are ubiquitous} . To a fair extent, [[category theory]] is all about representable functors and the other [[universal construction]]s: [[Kan extension]]s, [[adjoint functor]]s, [[limit]]s, which are all special cases of representable functors -- and representable functors are special cases of these. Listing examples of representable functors in [[category theory]] is much like listing examples of [[integral]]s in [[analysis]]: one can and does fill books with these. (In fact, that analogy has more to it than meets the casual eye: see [[coend]] for more). Keeping that in mind, we do list some special cases and special classes of examples that are useful to know. But any list is necessarily wildly incomplete. \hypertarget{limits}{}\subsubsection*{{Limits}}\label{limits} If $F:J\to C$ is a diagram in $C$, we can construct a diagram $\hom_C(-,F):J\to Set^{C^{op}}$ in the [[functor category]] $Set^{C^{op}}$ as the composite of $F$ with the curried [[hom-functor]] $C\to\Set^{C^{op}}$ (the [[Yoneda embedding]]). The object-wise [[limit]] of this diagram in [[Set]], that is, the functor $C^{op}\to\Set$ sending an object $x$ to the set which is the limit of the diagram $\hom_C(x,F):J\to\Set$, is representable iff the diagram $F$ has a limit in $C$; in fact, a representing object for that limit functor is exactly $\lim F$, and we obtain a natural isomorphism \begin{displaymath} \lim \hom_C(-,F)\cong\hom_C(-,\lim F). \end{displaymath} \hypertarget{products}{}\paragraph*{{Products}}\label{products} For an example in the case of the [[product]], let $c, d$ be objects of $C$, and consider the presheaf given by a product of [[hom-functor|hom-functors]] \begin{displaymath} \hom_C(-, c) \times \hom_C(-, d): C^{op} \to Set; \end{displaymath} that is, the functor which takes an object $x$ of $C$ to the set $\hom_C(x, c) \times \hom_C(x, d)$. A product $c \times d$ is precisely a representing or universal object for this presheaf, where the universal element is precisely the pair of projection maps \begin{displaymath} (\pi_c, \pi_d) \in \hom(c \times d, c) \times \hom(c \times d, d) \end{displaymath} We leave it to the reader to check that the representability here means precisely that given a pair of maps \begin{displaymath} (f, g) \in \hom(x, c) \times \hom(x, d) \end{displaymath} there exists a unique element in $\hom(x, c \times d)$, denoted $\langle f, g \rangle$, such that \begin{displaymath} \pi_c \langle f, g \rangle = f \qquad \pi_d \langle f, g \rangle = g. \end{displaymath} \hypertarget{weighted_limits}{}\paragraph*{{Weighted limits}}\label{weighted_limits} The above example has an important straightforward generalization. Noticing that the limit over the functor $H : J \to Set$ is just the collection of [[cone]]s over $H$ whose tip is the point \begin{displaymath} lim H = [J,Set](\Delta pt, H) \end{displaymath} the above expression $\lim\hom_C(-,F)$ can be rewritten equivalently as $[J,Set](\Delta pt, C(-,F(-)))$. Replacing in this expression the constant terminal functor $\Delta pt : J \to Set$ by any other functor leads to the notion of [[weighted limit]], as described there. \hypertarget{exponential_objects}{}\subsubsection*{{Exponential objects}}\label{exponential_objects} Suppose $C$ is a category which admits finite products; given objects $c, d$, consider the presheaf \begin{displaymath} \hom_C(- \times c, d): C^{op} \to Set. \end{displaymath} A representing or universal object for this presheaf is an [[exponential object]] $d^c$; the universal element \begin{displaymath} e \in \hom_C(d^c \times c, d) \end{displaymath} is a morphism called the \textbf{evaluation} map $eval: d^c \times c \to d$. \hypertarget{classifying_bundles}{}\subsubsection*{{Classifying bundles}}\label{classifying_bundles} Consider a category $Top$ of `nice' spaces (just to fix the discussion, let's say paracompact spaces, although this is a technical point), and a topological group $G$ therein, i.e., a group internal to $Top$. There is a presheaf \begin{displaymath} G\Bund: Top^{op} \to Set \end{displaymath} which assigns to each space $X$ the set of isomorphism classes of $G$-bundles over $X$, and assigns to each continuous map $f: X \to Y$ the function \begin{displaymath} G\Bund(f): G\Bund(Y) \to G\Bund(X) \end{displaymath} which carries a (class of a) $G$-bundle $E \to Y$ to the (class of the) pullback bundle $f^*E \to X$. It is well-known that the pullback construction is invariant with respect to homotopic deformations; that is, this presheaf descends to a functor on the [[homotopy category]], \begin{displaymath} G\Bund: Ho_{Top}^{op} \to Set. \end{displaymath} A \textbf{[[classifying space]]} $\mathcal{B}G$ is precisely a representing object for this functor; the universal element is the (isomorphism class of the) classifying $G$-bundle $[\pi: \mathcal{E}G \to \mathcal{B}G]$. These general considerations are quite commonplace in algebraic topology, where they crop up for example in the connection between generalized cohomology theories and spectra; cf. Brown's representability theorem. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[representable functor theorem]] \item [[Yoneda lemma]] \item [[classifying space]], [[classifying stack]], [[moduli space]], [[moduli stack]], [[derived moduli space]] \item [[classifying morphism]] \item [[representable morphism of stacks]] \item [[Artin representability theorem]], [[Artin-Lurie representability theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A discussion of representable functors in the context of enriched category theory is in section 1.6 and section 1.10 of \begin{itemize}% \item [[Max Kelly]], \emph{Basic concepts of enriched category theory} (\href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}{pdf}) \end{itemize} A query discussion on differences between representable functor and representation of a functor is archived \href{https://nforum.ncatlab.org/discussion/4497/representable-functor/}{here}. [[!redirects representable functor]] [[!redirects representable functors]] [[!redirects represented functor]] [[!redirects represented functors]] [[!redirects representable]] [[!redirects representables]] [[!redirects representable presheaf]] [[!redirects representable presheaves]] [[!redirects representing object]] [[!redirects representing objects]] \end{document}