\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{representation theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{mathematics}{}\paragraph*{{Mathematics}}\label{mathematics} [[!include mathematicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{InHomotopyTypeTheory} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Representation theory} is concerned with the study of [[algebra|algebraic]] [[structures]] via their [[representations]]. This concerns notably [[groups]], directly or in their incarnation as [[group algebras]], [[Hopf algebras]] or [[Lie algebras]], and usually concerns [[linear algebra|linear]] [[representations]], hence [[modules]] of these structures. But more generally representation theory also studies [[representations]]/[[modules]]/[[actions]] of generalizations of such structures, such as [[coalgebras]] via their [[comodules]] etc. See also at \emph{[[geometric representation theory]]}. \hypertarget{InHomotopyTypeTheory}{}\subsection*{{In homotopy type theory}}\label{InHomotopyTypeTheory} The fundamental concepts of representation theory have a particular natural formulation in [[homotopy theory]] and in fact in [[homotopy type theory]], which also refines it from the study of [[representations]] of [[groups]] to that of [[∞-representations]] of [[∞-groups]]. This includes both [[discrete ∞-groups]] as well as [[geometric homotopy types]] such as [[smooth ∞-groups]], the higher analog of [[Lie groups]]. The key observation to this translation is that \begin{enumerate}% \item an [[∞-group]] $G$ is equivalently given by its [[delooping]] $\mathbf{B}G$ regarded with its canonical [[pointed object|point]] (see at [[looping and delooping]]), hence the universal $G$-[[principal ∞-bundle]] \begin{displaymath} \itexarray{ G &\longrightarrow& \ast \\ && \downarrow \\ && \mathbf{B}G } \end{displaymath} \item an [[∞-action]] $\rho$ of $G$ on any [[geometric homotopy type]] $V$ is equivalently given by a [[homotopy fiber sequence]] of the form \begin{displaymath} \itexarray{ V &\stackrel{}{\longrightarrow}& V//_\rho G \\ && \downarrow \\ && \mathbf{B}G } \,, \end{displaymath} hence by a $V$-[[fiber ∞-bundle]] over $\mathbf{B}G$ which is the $\rho$-[[associated ∞-bundle]] to the universal $G$-[[principal ∞-bundle]] (see at \emph{[[∞-action]]} for more on this). \end{enumerate} Under this identification, the representation theory of $G$ is equivalently \begin{itemize}% \item the [[homotopy theory]] in the [[slice (∞,1)-topos]] over $\mathbf{B}G$; \item the [[homotopy type theory]] in the [[context]] of/[[dependent type theory|dependent on]] $\mathbf{B}G$. \end{itemize} More in detail, this yields the following identifications: [[!include homotopy type representation theory -- table]] \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[representation]], [[action]], [[module]] \begin{itemize}% \item [[group]], [[group algebra]], [[groupoid]], [[algebraic group]], [[Lie algebra]] \item [[vector space]], [[affine space]], [[symplectic vector space]] \item [[character]] \item [[action]], [[module]], [[equivariant object]] \item [[bimodule]], [[Morita equivalence]], [[induced representation]] \item [[Hilbert space]], [[Banach space]], [[Fourier transform]], [[functional analysis]] \item [[weight (in representation theory)]] \item [[orbit]], [[coadjoint orbit]], [[Killing form]] \item [[geometric quantization]], [[coherent state]] \item [[socle]], [[quiver]] \item [[module algebra]], [[comodule algebra]], [[Hopf action]], [[measuring]] \end{itemize} \item [[representation ring]] \item [[irreducible representation]] \item [[Schur's lemma]] \item [[Young diagram]] \item [[Schur index]] \item [[McKay correspondence]], [[ADE classification]] \item [[geometric representation theory]] \begin{itemize}% \item [[Borel-Weil theorem]], [[Beilinson-Bernstein localization]] \item [[D-module]], [[perverse sheaf]], [[BBDG decomposition theorem]] \item [[Kazhdan-Lusztig theory]] \item [[Dirac induction]] \end{itemize} \item [[Verma module]], [[BGG resolution]] \item [[Grothendieck group]], [[lambda-ring]], [[symmetric function]], [[formal group]] \item [[principal bundle]], [[torsor]], [[vector bundle]], [[Atiyah Lie algebroid]] \item [[character sheaf]], [[Harish Chandra transform]] \item [[geometric function theory]], [[groupoidification]] \item [[Eilenberg-Moore category]], [[algebra over an operad]], [[actegory]], [[crossed module]] \item [[reconstruction theorem]]s \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Lecture notes include \begin{itemize}% \item [[Tammo tom Dieck]], \emph{Representation theory}, 2009 (\href{http://www.uni-math.gwdg.de/tammo/rep.pdf}{pdf}) \item [[Constantin Teleman]], \emph{Representation theory}, lecture notes 2005 (\href{https://math.berkeley.edu/~teleman/math/RepThry.pdf}{pdf}) \item Joel Robbin, \emph{Real, Complex and Quaternionic representations}, 2006 (\href{http://www.math.wisc.edu/~robbin/angelic/RCH-G.pdf}{pdf}, [[Robbin08RCHRep.pdf:file]]) \end{itemize} Textbooks include \begin{itemize}% \item Charles Curtis, Irving Reiner, \emph{Representation theory of finite groups and associative algebras}, AMS 1962 \item [[William Fulton]], [[Joe Harris]], \emph{Representation Theory: a First Course}, Springer, Berlin, 1991 (\href{http://isites.harvard.edu/fs/docs/icb.topic1381051.files/fulton-harris-representation-theory.pdf}{pdf}) \item Klaus Lux, Herbert Pahlings, \emph{Representations of groups -- A computational approach}, Cambridge University Press 2010 (\href{http://www.math.rwth-aachen.de/~RepresentationsOfGroups/}{author page}, \href{http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521768078}{publisher page}) \end{itemize} A list of texts on representation theory is maintained at \begin{itemize}% \item [[Mikhail Khovanov]], \emph{\href{http://www.math.columbia.edu/~khovanov/resources}{Resources}}. \end{itemize} The relation to [[number theory]] and the [[Langlands program]] is discussed in \begin{itemize}% \item [[Robert Langlands]], \emph{Representation theory: Its rise and its role in number theory} (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.3303}{web}) \end{itemize} [[!redirects linear representation theory]] \end{document}