\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{retract} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{idempotents}{}\paragraph*{{Idempotents}}\label{idempotents} [[!include idempotents - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{to_the_point}{To the point}\dotfill \pageref*{to_the_point} \linebreak \noindent\hyperlink{of_simplices}{Of simplices}\dotfill \pageref*{of_simplices} \linebreak \noindent\hyperlink{in_arrow_categories}{In arrow categories}\dotfill \pageref*{in_arrow_categories} \linebreak \noindent\hyperlink{RetractsOfDiagrams}{Retracts of diagrams}\dotfill \pageref*{RetractsOfDiagrams} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An [[object]] $A$ in a [[category]] is called a \textbf{retract} of an object $B$ if there are [[morphisms]] $i\colon A\to B$ and $r \colon B\to A$ such that $r \circ i = id_A$. In this case $r$ is called a \textbf{retraction} of $B$ onto $A$. \begin{displaymath} id \;\colon\; A \underoverset{section}{i}{\to} B \underoverset{retraction}{r}{\to} A \,. \end{displaymath} Here $i$ may also be called a \emph{[[section]]} of $r$. (In particular if $r$ is thought of as exhibiting a [[bundle]]; the terminology originates from [[topology]].) Hence a \textbf{retraction} of a [[morphism]] $i \;\colon\; A \to B$ is a \emph{left-[[inverse]]}. In this situation, $r$ is a [[split epimorphism]] and $i$ is a [[split monomorphism]]. The entire situation is said to be a \emph{splitting of the [[idempotent]]} \begin{displaymath} B \stackrel{r}{\longrightarrow} A \stackrel{i}{\longrightarrow} B \,. \end{displaymath} Accordingly, a \textbf{[[split monomorphism]]} is a morphism that \emph{has} a retraction; a \textbf{[[split epimorphism]]} is a morphism that \emph{is} a retraction. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{lemma} \label{LeftInverseWithLeftInverseIsLeftInverse}\hypertarget{LeftInverseWithLeftInverseIsLeftInverse}{} \textbf{([[left inverse]] with [[left inverse]] is [[inverse]])} Let $\mathcal{C}$ be a [[category]], and let $f$ and $g$ be [[morphisms]] in $\mathcal{C}$, such that $g$ is a [[left inverse]] to $f$: \begin{displaymath} g \circ f = id \,. \end{displaymath} If $g$ itself has a left inverse $h$ \begin{displaymath} h \circ g = id \end{displaymath} then $h = f$ and $g = f^{-1}$ is an actual (two-sided) [[inverse morphism]] to $f$. \end{lemma} \begin{proof} Since [[inverse morphisms]] are unique if they exists, it is sufficient to show that \begin{displaymath} f \circ g = id \,. \end{displaymath} Compute as follows: \begin{displaymath} \begin{aligned} f \circ g & = \underset{ = id}{\underbrace{h \circ g}} \circ f \circ g \\ & = h \circ \underset{= id}{\underbrace{g \circ f}} \circ g \\ & = h \circ g \\ & = id \end{aligned} \end{displaymath} \end{proof} \begin{remark} \label{RetractsPreservedByFunctor}\hypertarget{RetractsPreservedByFunctor}{} Retracts are clearly preserved by any [[functor]]. \end{remark} \begin{remark} \label{SplitEpisAndMonos}\hypertarget{SplitEpisAndMonos}{} A [[split epimorphism]] $r; B \to A$ is the strongest of various notions of [[epimorphism]] (e.g., it is a [[regular epimorphism]], in fact an [[abolute limit|absolute]] [[coequalizer]], being the coequalizer of a pair $(e, 1_B)$ where $e = i \circ r: B \to B$ is idempotent). Dually, a [[split monomorphism]] is the strongest of various notions of monomorphism. \end{remark} \begin{prop} \label{RetractOfObjectWithLLP}\hypertarget{RetractOfObjectWithLLP}{} If an object $B$ has the [[left lifting property]] against a morphism $X \to Y$, then so does every of its retracts $A \to B$: \begin{displaymath} \left( \itexarray{ && Y \\ & {}^{\mathllap{\exists}}\nearrow& \downarrow \\ A &\to& Y } \right) \;\;\;\; := \;\;\;\; \left( \itexarray{ && && && Y \\ &&& {}^{\mathllap{\exists}}\nearrow& && \downarrow \\ A &\to& B &\to& A &\to& Y } \right) \end{displaymath} \end{prop} \begin{prop} \label{RetractOfRepresentable}\hypertarget{RetractOfRepresentable}{} Let $C$ be a [[category]] with [[split idempotent]]s and write $PSh(C) = [C^{op}, Set]$ for its [[presheaf category]]. Then a retract of a [[representable functor]] $F = PSh(C)$ is itself representable. \end{prop} This appears as (\hyperlink{Borceux}{Borceux, lemma 6.5.6}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{to_the_point}{}\subsubsection*{{To the point}}\label{to_the_point} \begin{itemize}% \item In a category with [[terminal object]] $*$ every morphism of the form $* \to X$ is a section, and the unique morphism $X \to *$ is the corresponding retraction. \end{itemize} \hypertarget{of_simplices}{}\subsubsection*{{Of simplices}}\label{of_simplices} The inclusion of standard topological [[horn]]s into the topological [[simplex]] $\Lambda^n_k \hookrightarrow \Delta^n$ is a retract in [[Top]]. \hypertarget{in_arrow_categories}{}\subsubsection*{{In arrow categories}}\label{in_arrow_categories} Let $\Delta[1] = \{0 \to 1\}$ be the [[interval category]]. For every category $C$ the [[functor category]] $[\Delta[1], C]$ is the [[arrow category]] of $C$. In the theory of [[weak factorization systems]] and [[model categories]], an important role is played by retracts in $C^{\Delta[1]}$, the [[arrow category]] of $C$. Explicitly spelled out in terms of the original category $C$, a morphism $f:X\to Y$ is a retract of a morphism $g:Z\to W$ if we have commutative squares \begin{displaymath} \itexarray{ id_X \colon & X & \to & Z & \to & X \\ & f \downarrow & & g \downarrow & & \downarrow f \\ id_Y \colon & Y & \to & W & \to & Y } \end{displaymath} such that the top and bottom rows compose to identities. \begin{prop} \label{RetractsOfMorphismWithLiftingProperty}\hypertarget{RetractsOfMorphismWithLiftingProperty}{} Classes of morphisms in a category $C$ that are given by a left or right [[lifting property]] are preserved under retracts in the [[arrow category]] $[\Delta[1],C]$. In particular the defining classes of a [[model category]] are closed under retracts. \end{prop} This is fairly immediate, a proof is made explicit \href{ClosurePropertiesOfInjectiveAndProjectiveMorphisms}{here}. This implies: \begin{prop} \label{RetractOfIso}\hypertarget{RetractOfIso}{} In every category $C$ the class of [[isomorphisms]] is preserved under retracts in the [[arrow category]] $[\Delta[1], C]$ \end{prop} \begin{proof} This is also checked directly: for \begin{displaymath} \itexarray{ id \colon & a_1 &\to& a_2 &\to& a_1 \\ & \downarrow && \downarrow && \downarrow \\ id \colon & b_1 &\to& b_2 &\to& b_1 } \end{displaymath} a retract diagram and $a_2 \to b_2$ an isomorphism, the inverse to $a_1 \to b_1$ is given by the composite \begin{displaymath} \itexarray{ & & & a_2 &\to& a_1 \\ & && \uparrow && \\ & b_1 &\to& b_2 && } \,, \end{displaymath} where $b_2 \to a_2$ is the inverse of the middle morphism. \end{proof} \hypertarget{RetractsOfDiagrams}{}\subsubsection*{{Retracts of diagrams}}\label{RetractsOfDiagrams} For the following, let $C$ and $J$ be categories and write $J^{\triangleleft}$ for the [[join of quasi-categories|join]] of $J$ with a single [[initial object]], so that [[functor]]s $J^{\triangleleft} \to C$ are precisely [[cone]]s over functors $J \to C$. Write \begin{displaymath} i : J \to J^{\triangleleft} \end{displaymath} for the canonical inclusion and hence $i^* F$ for the underlying diagram of a cone $F : J^{\triangleleft} \to C$. Finally, write $[J^{\triangleleft}, C]$ for the [[functor category]]. \begin{prop} \label{RetractsOfLimits}\hypertarget{RetractsOfLimits}{} If $Id: F_1 \hookrightarrow F_2 \to F_1$ is a [[retract]] in the category $[J^{\triangleleft}, C]$ and $F_2 : J^{\triangleleft} \to C$ is a [[limit]] [[cone]] over the [[diagram]] $i^* F_2 : J \to C$, then also $F_1$ is a limit cone over $i^* F_1$. \end{prop} \begin{proof} We give a direct and a more abstract argument. \textbf{Direct argument}. We can directly check the [[universal property]] of the limit: for $G$ any other [[cone]] over $i^* F_1$, the composite $i^* G = i^* F_1 \to i^* F_2$ exhibits $G$ also as a cone over $i^* F_2$. By the pullback property of $F_2$ this extends to a morphism of cones $G \to F_2$. Postcomposition with $F_2 \to F_1$ makes this a morphism of cones $G \to F_1$. By the injectivity of $F_1 \to F_2$ and the universality of $F_2$, any two such cone morphisms are equals. \textbf{More abstract argument}. The limiting cone over a diagram $D : J \to C$ may be regarded as the right [[Kan extension]] $i_* D := Ran_i D$ along $i$ \begin{displaymath} \itexarray{ J &\stackrel{D}{\to}& C \\ {}^{\mathllap{i}}\downarrow & \nearrow_{i_* D} \\ J^{\triangleleft} } \,. \end{displaymath} Therefore a cone $F : J^{\triangleleft} \to C$ is limiting precisely if the $(i^* \dashv i_*)$-[[unit of an adjunction|unit]] \begin{displaymath} F \stackrel{}{\to} i_* i^* F \end{displaymath} is an [[isomorphism]]. Since this unit is a [[natural transformation]] it follows that applied to the retract diagram \begin{displaymath} Id : F_1 \hookrightarrow F_2 \to F_1 \end{displaymath} it yields the retract diagram \begin{displaymath} \itexarray{ Id : & F_1 &\to& F_2 &\to& F_1 \\ & \downarrow && \downarrow && \downarrow \\ Id : & i_* i^* F_1 &\to& i_* i^* F_2 &\to& i_* i^* F_1 } \end{displaymath} in $[\Delta[1], [J^{\triangleleft}, C]]$. Here by assumption the middle morphism is an isomorphism. Since isomorphisms are stable under retract, by prop. \ref{RetractOfIso}, also the left and right vertical morphism is an isomorphism, hence also $F_1$ is a limiting cone. \end{proof} This argument generalizes form limits to [[homotopy limit]]s. For that, let now $C$ be a [[category with weak equivalences]] and write $Ho(C) : Diagram^{op} \to Cat$ for the corresponding [[derivator]]: $Ho(C)(J) := [J,C](W^J)^{-1}$ is the [[homotopy category]] of $J$-diamgrams in $C$, with respect to the degreewise weak equivalences in $C$. \begin{cor} \label{RetractOfHomotopyLimits}\hypertarget{RetractOfHomotopyLimits}{} Let \begin{displaymath} Id : F_1 \to F_2 \to F_1 \end{displaymath} be a retract in $Ho(C)(J^{\triangleleft})$. If $F_2$ is a [[homotopy limit]] cone over $i^* F_2$, then also $F_1$ is a homotopy limit cone over $i^* F_1$. \end{cor} \begin{proof} By the discussion at [[derivator]] we have that \begin{enumerate}% \item $i_* : Ho(C)(J) \to Ho(C)(J^{\triangleleft})$ forms [[homotopy limit]] cones; \item $F \to i_* i^* F$ is an isomorphism precisely if $F$ is a homotopy limit cone. \end{enumerate} With this the claim follows as in prop. \ref{RetractsOfLimits}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[deformation retract]], [[neighbourhood retract]] \item [[absolute retract]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Karol Borsuk]], \emph{Theory of retracts} \item [[Sibe Mardešić]], \emph{Absolute Neighborhood Retracts and Shape Theory} (\href{https://www.maths.ed.ac.uk/~v1ranick/papers/mardesic.pdf}{pdf}) \item [[Francis Borceux]], Def. 1.7.3 and Sec. 6.5 of: \emph{[[Handbook of Categorical Algebra]] I} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Retract}{Retract}} \end{itemize} [[!redirects retracts]] [[!redirects retraction]] [[!redirects retractions]] [[!redirects left inverse]] [[!redirects left inverses]] [[!redirects left-inverse]] [[!redirects left-inverses]] \end{document}