\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{right/left Kan fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{GrothGrpdFibsAreRightKanFibs}{Motivation: ordinary fibrations in groupoids are right Kan fibrations}\dotfill \pageref*{GrothGrpdFibsAreRightKanFibs} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_lifting_property}{Homotopy lifting property}\dotfill \pageref*{homotopy_lifting_property} \linebreak \noindent\hyperlink{AsFibrationsInInfinityGroupoids}{As fibrations in $\infty$-groupoids}\dotfill \pageref*{AsFibrationsInInfinityGroupoids} \linebreak \noindent\hyperlink{PropRightAnodyne}{(Left/)Right anodyne morphisms}\dotfill \pageref*{PropRightAnodyne} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For ordinary [[categories]] there is the notion of \begin{enumerate}% \item [[Grothendieck fibration]] between two categories. \item and the special case of a [[fibration fibered in groupoids]]. \end{enumerate} The analog of this for [[quasi-categories]] are \begin{enumerate}% \item [[Cartesian fibration]]s \item the special case of left/right (Kan-) [[fibrations of quasi-categories]] \end{enumerate} respectively. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[morphism]] of [[simplicial set]]s $f : X \to S$ is a \textbf{left fibration} or \textbf{left Kan fibration} if it has the [[right lifting property]] with respect to all [[horn]] inclusions $\Lambda[n]_k \to \Delta[n]$ except possibly the right outer ones: $0 \leq k \lt n$. It is a \textbf{right fibration} or \textbf{right Kan fibration} if its extends against all horns except possibly the left outer ones: $0 \lt k \leq n$. So $X \to S$ is a left fibration precisely if for all commuting squares \begin{displaymath} \itexarray{ \Lambda[n]_{k} &\to& X \\ \downarrow &{}^{\exists}\nearrow& \downarrow \\ \Delta[n] &\to& S } \end{displaymath} for $n \in \mathbb{N}$ and $0 \leq k \lt n$, a diagonal lift exists as indicated. Morphisms with the [[left lifting property]] against all left/right fibrations are called \textbf{left/right anodyne} maps. Write \begin{displaymath} RFib(S) \subset sSet/S \end{displaymath} for the full [[SSet]]-[[subcategory]] of the [[overcategory]] of [[sSet]] over $S$ on those morphisms that are right fibrations. This is a [[Kan complex]]-enriched category and as such an incarnation of the \textbf{[[(∞,1)-category]] of right fibrations}. It is modeled by the [[model structure for left fibrations|model structure for right fibrations]]. For details on this see the discussion at [[(∞,1)-Grothendieck construction]]. \hypertarget{GrothGrpdFibsAreRightKanFibs}{}\subsection*{{Motivation: ordinary fibrations in groupoids are right Kan fibrations}}\label{GrothGrpdFibsAreRightKanFibs} Ordinary [[fibration fibered in groupoids|categories fibered in groupoids]] have a simple characterization in terms of their [[nerve]]s. Let $N : Cat \to sSet$ be the [[nerve]] functor and for $p : E \to B$ a morphism in [[Cat]] (a [[functor]]), let $N(p) : N(E) \to N(B)$ be the corresponding morphism in [[sSet]]. Then \begin{prop} \label{}\hypertarget{}{} The functor $p : E \to B$ is an [[fibration fibered in groupoids|fibration in groupoids]] precisely if the morphism $N(p) : N(E) \to N(B)$ is a right Kan fibration of simplicial sets \end{prop} To see this, first notice the following facts: \begin{lemma} \label{}\hypertarget{}{} For $C$ a [[category]], the [[nerve]] $N(C)$ is [[coskeletal|2-coskeletal]]. In particular all $n$-spheres for $n \geq 3$ have unique fillers \begin{displaymath} \itexarray{ \partial \Delta[n] &\stackrel{\forall}{\to}& N(C) \\ \downarrow & \nearrow_{\mathrlap{\exists !}} \\ \Delta[n] } \;\;\;\;\; (n \geq 3) \end{displaymath} and (implied by that) all $n$-horns for $n \gt 3$ have fillers \begin{displaymath} \itexarray{ \partial \Lambda[n] &\stackrel{\forall}{\to}& N(C) \\ \downarrow & \nearrow_{\mathrlap{\exists }} \\ \Delta[n] } \;\;\;\;\; (n \gt 3) \,. \end{displaymath} \end{lemma} This is discussed at [[nerve]]. \begin{lemma} \label{}\hypertarget{}{} If $p : E \to B$ is an ordinary [[functor]], then $N(f) : N(E) \to N(B)$ is an [[inner fibration]], meaning that its has the [[right lifting property]] with respect to all \emph{inner} horn inclusions $\Lambda[n]_i \hookrightarrow \Delta[n]$ for $0 \lt i \lt n$. \end{lemma} This is discussed at [[inner fibration]]. \begin{proof} From the above lemmas it follows that $N(p) : N(E) \to N(B)$ is a right fibration already precisely if it has the right lifting property with respect only to the three horn inclusions \begin{displaymath} \{ \Lambda[n]_n \hookrightarrow \Delta[n] | n = 1,2,3\} \,. \end{displaymath} So we check explicitly what these three conditions amount to \begin{itemize}% \item $n=1$ -- The existence of all fillers \begin{displaymath} \itexarray{ \Lambda[1]_1 = \Delta^{\{1\}} &\stackrel{e}{\to}& N(E) \\ \downarrow & {}^{{\hat f}}\nearrow & \downarrow^{\mathrlap{N(p)}} \\ \Delta^{\{0 \to 1\}} &\stackrel{f}{\to}& N(B) } \end{displaymath} means that for all objects $e \in E$ and morphism $f : b \to p(e)$ in $B$, there exists a morphism $\hat f : \hat b \to e$ in $E$ such that $p(\hat f) = f$. \item $n=2$ -- The existence of fillers \begin{displaymath} \itexarray{ \Lambda[2]_2 &\stackrel{e}{\to}& N(E) \\ \downarrow & {}^{{\hat f}}\nearrow & \downarrow^{\mathrlap{N(p)}} \\ \Delta[2] &\stackrel{f}{\to}& N(B) } \end{displaymath} means that for all diagrams \begin{displaymath} \itexarray{ && e_1 \\ &&& \searrow^{\mathrlap{\epsilon_{12}}} \\ e_0 &&\stackrel{\epsilon_{02}}{\to}&& e_2 } \end{displaymath} in $E$ and commuting triangles \begin{displaymath} \itexarray{ && p(e_1) \\ & {}^{\mathllap{f}}\nearrow&& \searrow^{\mathrlap{p(\epsilon_{12}})} \\ p(e_0) &&\stackrel{p(\epsilon_{02})}{\to}&& p(e_2) } \end{displaymath} in $B$, there is a commuting triangle \begin{displaymath} \itexarray{ && e_1 \\ &{}^{\mathllap{\hat f}}\nearrow&& \searrow^{\mathrlap{\epsilon_{12}}} \\ e_0 &&\stackrel{\epsilon_{02}}{\to}&& e_2 } \end{displaymath} in $E$, such that $p(\hat f ) = f$. \item $n=3$ -- \ldots{} Consider first the case of degenrate 3-simplices on $N(B)$, on 2-simplices as above. Suppose in the above situation two lifts $(\hat f)_1$ and $(\hat f)_2$ are found. Together these yield a $\Lambda[3]_3$-horn in $N(E)$. The filler condition says this can be filled, which implies that $(\hat f)_1 = (\hat f)_2$. So the $n=3$-condition implies that the lift whose existence is guaranteed by the $n=2$-condition is unique. By similar reasoning one sees that this is all the $n=3$-condition yields. \end{itemize} In total, these three lifting conditions are precisely those for a Grothendieck fibration in groupoids. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{remark} \label{}\hypertarget{}{} Under the operation of forming the [[opposite quasi-category]], left fibrations turn into right fibrations, and vice versa: if $p : C \to D$ is a left fibration then $p^{op} : C^{op} \to D^{op}$ is a right fibration. Therefore it is sufficient to list properties of only one type of these fib rations, that for the other follows. \end{remark} \hypertarget{homotopy_lifting_property}{}\subsubsection*{{Homotopy lifting property}}\label{homotopy_lifting_property} In classical [[homotopy theory]], a continuous map $p : E \to B$ of [[topological spaces]] is said to have the [[homotopy lifting property]] if it has the [[right lifting property]] with respect to all morphisms $Y \stackrel{(Id, 0)}{\to} Y \times I$ for $I = [0,1]$ the standard [[interval]] and every commuting diagram \begin{displaymath} \itexarray{ Y &\to& E \\ \downarrow && \downarrow \\ Y \times I &\to& B } \end{displaymath} there exists a lift $\sigma : Y \times I \to E$ making the two triangles \begin{displaymath} \itexarray{ Y &\to& E \\ \downarrow &{}^\sigma\nearrow& \downarrow \\ Y \times I &\to& B } \end{displaymath} commute. For $Y = *$ the [[point]] this can be rephrased as saying that the universal morphism $E^I \to B^I \times_B E$ induced by the commuting square \begin{displaymath} \itexarray{ E^I &\to& E \\ \downarrow && \downarrow \\ B^I &\to& B } \end{displaymath} is an [[epimorphism]]. If it is even an [[isomorphism]] then the lift $\sigma$ exists \emph{uniquely} . This is the situation that the following proposition generalizes: \begin{prop} \label{}\hypertarget{}{} A morphism $p : X \to S$ of simplicial sets is a left fibration precisely if the canonical morphism \begin{displaymath} X^{\Delta[1]} \to X^{\{0\}} \times_{S^{\{0\}}} S^{\Delta^1} \end{displaymath} is a trivial Kan fibration. \end{prop} \begin{proof} This is a corollary of the characterization of left anodyne morphisms in \hyperlink{PropRightAnodyne}{Properties of left anodyne maps} by [[Andre Joyal]], recalled in [[Higher Topos Theory|HTT, corollary 2.1.2.10]]. \end{proof} \hypertarget{AsFibrationsInInfinityGroupoids}{}\subsubsection*{{As fibrations in $\infty$-groupoids}}\label{AsFibrationsInInfinityGroupoids} The notion of right fibration of quasi-categories generalizes the notion of [[category fibered in groupoids]]. This follows from the following properties. \begin{prop} \label{OverKanComplex}\hypertarget{OverKanComplex}{} Over a [[Kan complex]] $T$, left fibrations $S \to T$ are automatically [[Kan fibration]]s. \end{prop} \begin{proof} This appears as [[Higher Topos Theory|HTT, prop. 2.1.3.3]]. \end{proof} As an important special case of this we have \begin{corollary} \label{}\hypertarget{}{} For $C \to *$ a right (left) fibration over the [[point]], $C$ is a [[Kan complex]], i.e. an [[∞-groupoid]]. \end{corollary} \begin{proof} This is originally due to [[Andre Joyal]]. Recalled at [[Higher Topos Theory|HTT, prop. 1.2.5.1]]. \end{proof} \begin{prop} \label{PreservationByPullback}\hypertarget{PreservationByPullback}{} Right (left) fibrations are preserved by [[pullback]] in [[sSet]]. \end{prop} \begin{corollary} \label{}\hypertarget{}{} It follows that the fiber $X_c$ of every right fibration $X \to C$ over every point $c \in C$, i.e. the [[pullback]] \begin{displaymath} \itexarray{ X_c &\to& X \\ \downarrow && \downarrow \\ \{c\} &\to& C } \end{displaymath} is a [[Kan complex]]. \end{corollary} \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ quasi-categories that are ordinary [[categories]] (i.e. simplicial sets that are [[nerve]]s of ordinary categories), a morphism $C \to D$ is a right fibration precisely if the correspunding ordinary [[functor]] exhibits $C$ as a [[category fibered in groupoids]] over $D$. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 2.1.1.3]]. \end{proof} A canonical class of examples of a [[fibered category]] is the [[codomain fibration]]. This is actually a [[bifibration]]. For an ordinary category, a bifiber of this is just a set. For an $(\infty,1)$-category it is an $\infty$-groupoid. Hence fixing only one fiber of the bifibration should yield a fibration in $\infty$-groupoids. This is asserted by the following statement. \begin{prop} \label{}\hypertarget{}{} Let $p : K \to C$ be an arbitrary morphism to a [[quasi-category]] $C$ and let $C_{p/}$ be the corresponding [[over quasi-category|under quasi-category]]. Then the canonical propjection $C_{p/} \to C$ is a left fibration. \end{prop} Due to [[Andre Joyal]]. Recalled as [[Higher Topos Theory|HTT, prop 2.1.2.2]]. \hypertarget{PropRightAnodyne}{}\subsubsection*{{(Left/)Right anodyne morphisms}}\label{PropRightAnodyne} \begin{prop} \label{}\hypertarget{}{} The collection of left anodyne morphisms (those with [[left lifting property]] against left fibrations) is equivalently $LAn = LLP(RLP(LAn_0))$ for the following choices of $LAn_0$: $LAn_0 =$ \begin{enumerate}% \item the collection of all left [[horn]] inclusions \end{enumerate} $\{ \Lambda[n]_{i} \to \Delta[n] | 0 \leq i \lt n \}$; \begin{enumerate}% \item the collection of all inclusions of the form \begin{displaymath} (\Delta[m] \times \{0\}) \coprod_{\partial \Delta[m] \times \{0\}} (\partial \Delta[m] \times \Delta[1]) \hookrightarrow \Delta[m] \times \Delta[1] \end{displaymath} \item the collection of all inclusions of the form \begin{displaymath} (S' \times \{0\}) \coprod_{S \times \{0\}} (S \times \Delta[1]) \hookrightarrow S' \times \Delta[1] \end{displaymath} for all inclusions of simplicial sets $S \hookrightarrow S'$. \end{enumerate} \end{prop} This is due to [[Andre Joyal]], recalled as [[Higher Topos Theory|HTT, prop 2.1.2.6]]. \begin{proof} \ldots{} \end{proof} \begin{cor} \label{}\hypertarget{}{} For $i : A \to A'$ left-anodyne and $j : B \to B'$ a cofibration in the [[model structure for quasi-categories]], the canonical morphism \begin{displaymath} (A \times B') \coprod_{A \times B} (A' \times B) \to A' \times B' \end{displaymath} is left-anodyne. \end{cor} This appears as [[Higher Topos Theory|HTT, cor. 2.1.2.7]]. \begin{cor} \label{}\hypertarget{}{} For $p : X \to S$ a left fibration and $i : A \to B$ a cofibration of simplicial sets, the canonical morphism \begin{displaymath} q : X^B \to X^A \times_{S^A} S^B \end{displaymath} is a left fibration. If $i$ is furthermore left anodyne, then it is an acyclic [[Kan fibration]]. \end{cor} This appears as [[Higher Topos Theory|HTT, cor. 2.1.2.9]]. \begin{prop} \label{}\hypertarget{}{} For $f : A_0 \to A$ and $g : B_0 \to B$ two inclusions of [[simplicial set]]s with $f$ left anodyne, we have that the canonical morphism \begin{displaymath} (A_0 \star B ) \coprod_{A_0 \star B_0} (A \star B_0) \to A \star B \end{displaymath} into the [[join of simplicial sets]] is left anodyne. \end{prop} This is due to [[Andre Joyal]]. It appears as [[Higher Topos Theory|HTT, lemma 2.1.4.2]]. \begin{prop} \label{}\hypertarget{}{} \textbf{(restriction of over-quasi-categories along left anodyne inclusions)} Let $p : B \to S$ be a morphism of [[simplicial set]]s and $i : A \to B$ a left anodyne morphism, then the restriction morphism of [[over quasi-categories|under quasi-categories]] \begin{displaymath} S_{/p} \to S_{/p|_A} \end{displaymath} is an acyclic [[Kan fibration]]. \end{prop} This is a special case of what appears as [[Higher Topos Theory|HTT, prop. 2.1.2.5]], which is originally due to [[Andre Joyal]]. \begin{prop} \label{}\hypertarget{}{} Let $p : X \to S$ be a morphism of simplicial sets with [[section]] $s : S \to X$. If there is a fiberwise simplicial [[homotopy]] $X \times \Delta[1] \to S$ from $s \circ p$ to $Id_X$ then $s$ is left anodyne. \end{prop} This appears as [[Higher Topos Theory|HTT, prop. 2.1.2.11]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kan fibration]], [[anodyne morphism]] \item \textbf{right/left Kan fibration}, [[right/left anodyne map]] \begin{itemize}% \item [[model structure for left fibrations]] \item [[universal right fibration]] \end{itemize} \item [[inner fibration]] \item [[Cartesian fibration]] \item [[right/left fibration of simplicial spaces]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \item [[David Ayala]], [[John Francis]], \emph{Fibrations of $\infty$-Categories} (\href{https://arxiv.org/abs/1702.02681}{arXiv:1702.02681}) \end{itemize} [[!redirects left fibration]] [[!redirects left fibrations]] [[!redirects left Kan fibration]] [[!redirects left Kan fibrations]] [[!redirects right fibration]] [[!redirects right fibrations]] [[!redirects right Kan fibration]] [[!redirects right Kan fibrations]] [[!redirects left anodyne morphism]] [[!redirects right anodyne morphism]] [[!redirects left anodyne morphisms]] [[!redirects right anodyne morphisms]] [[!redirects left anodyne map]] [[!redirects right anodyne map]] [[!redirects left anodyne maps]] [[!redirects right anodyne maps]] [[!redirects right/left anodyne map]] \end{document}