\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{rigidification of a stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{GeneralDefinition}{General}\dotfill \pageref*{GeneralDefinition} \linebreak \noindent\hyperlink{DefinitionForAlgebraicStacks}{For algebraic stacks}\dotfill \pageref*{DefinitionForAlgebraicStacks} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{ForAGeometricallyDiscreteGroupoid}{For a geometrically discrete groupoid}\dotfill \pageref*{ForAGeometricallyDiscreteGroupoid} \linebreak \noindent\hyperlink{ForAnAlgebraicStack}{For an algebraic stack}\dotfill \pageref*{ForAnAlgebraicStack} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Given a [[stack]] $\mathcal{S}$ over a [[site]] $\mathcal{C}$. One often wants to rigidify (kill off a flat subgroup of the [[inertia orbifold|inertia]]) in order to realize the stack as a [[gerbe]] over an [[algebraic space]]. Alternative idea: Given a [[moduli stack]] classifying some kind of structure, one sometimes wants to ``remove the automorphisms'' inside it such as to be left with just a [[moduli space]]. This is sometimes called ``rigidification''. The archetypical example is the passage from the the groupoid of [[line bundles]] over a space to its [[decategorification]] given by the (set underlying the) [[Picard group]]. Doing this over all spaces means passing from the stack of line bundles to the \emph{[[Picard scheme]]}. The general process of ``rigidification'' is supposed to be a mechanism that generalizes this process (\hyperlink{ACV}{ACV, 5.1.1}). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We first give the simple general definition of rigidification \begin{itemize}% \item \hyperlink{GeneralDefinition}{General definition} \end{itemize} Then we discuss specifically the case for [[algebraic stacks]] where one may add a bunch of technical assumptions \begin{itemize}% \item \hyperlink{DefinitionForAlgebraicStacks}{Definition for algebraic stacks} \end{itemize} \hypertarget{GeneralDefinition}{}\subsubsection*{{General}}\label{GeneralDefinition} For $\mathbf{H}$ an [[(∞,1)-topos]] and $X \in \mathbf{H}$ any [[object]], write $\mathbf{Aut}(X) \in Grp(\mathbf{H})$ for its internal [[automorphism ∞-group]]. Consider a [[braided ∞-group]] $H \in BrGrp(\mathbf{H})$ and an [[∞-group]] [[homomorphism]] \begin{displaymath} \iota \;\colon\; \mathbf{B}H \to \mathbf{Aut}(X) \end{displaymath} of [[∞-groups]]. This defines an [[∞-action]] of $\mathbf{B}H$ on $X$, hence a [[fiber sequence]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ X &\to& X//\mathbf{B}H \\ && \downarrow \\ && \mathbf{B}^2 H } \;\;\;\; inside \;\;\;\; \itexarray{ X &\to& X//\mathbf{Aut}(X) \\ && \downarrow \\ && \mathbf{B} \mathbf{Aut}(X) } \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} The [[∞-quotient]] $X//\mathbf{B}H$ is what is sometimes called the ``rigidification'' of $X$, especially if $H$ is maximal such that there is a homomorphism $\mathbf{B}H \to \mathbf{Aut}(X)$. \end{defn} \hypertarget{DefinitionForAlgebraicStacks}{}\subsubsection*{{For algebraic stacks}}\label{DefinitionForAlgebraicStacks} Let $X$ be a [[scheme]]. Let $\mathcal{S}\to X$ be an [[algebraic stack]] fibered in groupoids over $X$. Let $H$ be a finitely presented, [[separated morphism|separated]], [[group scheme]] over $X$ such that for each $\xi\in\mathcal{S}(T)$ there is an embedding $H(T)\to Aut_T(\xi)$ compatible with pullback. It follows that $H$ must be [[abelian group|abelian]] (because $H(T)$ lies in the center of $Aut_T(\xi)$). The condition on $H$ is trivially satisfied whenever $\mathcal{S}$ is banded by $H$. Define the $H$-rigidification of $\mathcal{S}$ to be $\mathcal{S}^H$. (\hyperlink{ACV}{ACV, def. 5.1.4}). Theorem (\hyperlink{ACV}{A-C-V, theorem 5.1.5}): The space $\mathcal{S}^H$ exists such that there is a [[formally smooth morphism|smooth]] surjective finitely presented morphism of stacks $\mathcal{S}\to \mathcal{S}^H$ satisfying the following: \begin{enumerate}% \item For any $\xi\in \mathcal{S}(T)$ with image $\eta\in \mathcal{S}^H(T)$, we have $H(T)$ lies in the kernel of $Aut_T(\xi)\to Aut_T(\eta)$. \item The map $\mathcal{S}\to \mathcal{S}^H$ is universal with respect to stack morphisms satisfying (1). \item If $T$ is the spectrum of an algebraically closed field, then $Aut_T(\eta)=Aut_T(\xi)/H(T)$. \item A moduli space for $\mathcal{S}$ is also a moduli space for $\mathcal{S}^H$. \end{enumerate} and if $\mathcal{S}$ is a [[Deligne-Mumford stack]], then $\mathcal{S}^H$ is also a Deligne-Mumford stack and $\mathcal{S}\to \mathcal{S}^H$ is [[formally etale morphism|etale]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} We discuss some examples. First, to get rid of all distraction introduced by the dependence on objects of a [[site]] of definition, we consider the special case where the underlying site is the point, hence where stacks are just plain [[groupoids]] -- \emph{geometrically [[discrete groupoids]]} for emphasis. \begin{itemize}% \item \hyperlink{ForAGeometricallyDiscreteGroupoid}{For a geometrically discrete groupoid} \end{itemize} Then we discuss aspects of regidification for [[algebraic stacks]] \begin{itemize}% \item \hyperlink{ForAnAlgebraicStack}{For an algebraic stack}. \end{itemize} \hypertarget{ForAGeometricallyDiscreteGroupoid}{}\subsubsection*{{For a geometrically discrete groupoid}}\label{ForAGeometricallyDiscreteGroupoid} If $\mathbf{H} =$ [[∞Grpd]] and $X \in \infty Grpd$ is a [[1-truncated]] object, hence just a [[groupoid]], then $\mathbf{Aut}(X)$ is its [[automorphism 2-group]]. Its [[objects]] are naturally identified with those [[functors]] $\alpha \colon X \to X$ that are [[equivalence of groupoids|equivalences]], and its [[morphisms]] with the [[natural isomorphisms]] $g \colon \alpha \to \beta$ between these. In particular if $\alpha = \beta = id$ is the identity automorphism, then such a $g$ is a [[function]] which to each [[object]] $\xi \in X$ assigns an [[automorphism]] $g_\xi \colon \xi \to \xi$ in $X$ such that for each [[morphism]] $\phi \colon \xi \to \eta$ in $X$ the naturality square \begin{displaymath} \itexarray{ \xi &\stackrel{\phi}{\to}& \eta \\ \downarrow^{\mathrlap{g_\xi}} && \downarrow^{\mathrlap{g_\eta}} \\ \xi &\stackrel{\phi}{\to}& \eta } \,. \end{displaymath} [[commuting diagram|commutes]]. Now for $H$ an [[abelian group]] there is the [[delooping]] [[groupoid]] $\mathbf{B}H$ which has a single object and $H$ as the group of morphisms from that object to itself. Both $\mathbf{Aut}(X)$ and $\mathbf{B}H$ are [[2-groups]] in this case. A homomorphism of 2-groups \begin{displaymath} \iota \;\colon\; \mathbf{B}H \to \mathbf{Aut}(X) \end{displaymath} has to send the essentially unique point of $\mathbf{B}H$ to the [[identity]] [[functor]] $id_X$ and is hence equivalently a [[function]] that sends each element $g \in G$ to a [[natural isomorphism]] $g \colon id_X \to id_X$, hence a function $g_{(-)}$ that sends each object $\xi \in X$ to a morphism $g_\xi \colon \xi \to \xi$ in $X$, such that the above diagram commutes. Moreover, this being a [[2-group]] [[homomorphism]] means that for $g_1, g_2 \in H$ two elements, they are sent to the composite $(g_2)_\xi\circ (g_1)_\xi$ in $X$. In other words, we have a [[functor]] \begin{displaymath} \rho \colon X \times \mathbf{B}H \to X \,, \end{displaymath} which takes a pair of objects $(\xi,\ast)$ to $\xi$, takes a pair of morphisms of the form $(id_\xi, \ast \stackrel{g}{\to} \ast)$ to $(\xi \stackrel{g_\xi}{\to} \xi)$ and takes a pair of morphisms of the form $(\xi \stackrel{\phi}{\to} \eta, id_\ast)$ to $(\xi \stackrel{\phi}{\to} \eta)$; and which satisfies the action property, \begin{displaymath} \itexarray{ X \times \mathbf{B}H \times \mathbf{B}H &\stackrel{\rho \times id_{\mathbf{B}H}}{\to}& X \times \mathbf{B}H \\ {}^{\mathllap{id_X \times \cdot_{\mathbf{B}H}}}\downarrow &\swArrow& \downarrow^{\rho} \\ X \times \mathbf{B}G &\stackrel{\rho}{\to}& X } \,. \end{displaymath} In fact, with the groupoids explicitly presented the way we have discussed them, the [[natural transformation]] filling this [[diagram]] is the [[identity]] and hence we have exhibited the [[∞-action]] of the [[2-group]] $\mathbf{B}H$ on the groupoid $X$ by an ordinary [[action]]. More precisely, under passing to [[nerves]] of [[groupoids]] we have exhibited it as the [[action]] of a [[simplicial group]] on a [[Kan complex]], which is just a [[simplicial object|simplicial diagram]] of ordinary actions of ordinary groups on plain sets. Since these are [[simplicial skeleton|2-coskeletal]] simplicial sets (being the nerves of just 1-groupoids), it is sufficient to consider them just in degrees 0,1,2. So then we have the following simplicial diagram of ordinary groups acting on ordinary sets \begin{displaymath} \left( \itexarray{ X_1 \times_{X_0} X_1 \\ \downarrow \downarrow \downarrow \\ X_1 \\ \downarrow \downarrow \\ X_0 } \right) \times \left( \itexarray{ H \times H \\ \downarrow \downarrow \downarrow \\ H \\ \downarrow \downarrow \\ \ast } \right) \to \left( \itexarray{ X_1 \times_{X_0} X_1 \\ \downarrow \downarrow \downarrow \\ X_1 \\ \downarrow \downarrow \\ X_0 } \right) \,. \end{displaymath} In degree 0 this is the identity map $(\xi,\ast) \mapsto \xi$, in degree 1 it is (with the symbols as above) the map $(\phi,g) \mapsto g_\eta \circ \phi = \phi \circ g_\xi$ and so on. Finally, the [[∞-quotient]] $X//\mathbf{B}H$ of an [[∞-action]] of an [[∞-group]] presented as an ordinary action of a [[simplicial group]] on a [[Kan complex]] this way is presented by the [[Borel construction]], namely the ordinary [[quotient]] of [[simplicial sets]] \begin{displaymath} X \times_{\mathbf{B}H} \mathbf{E}\mathbf{B}H \coloneqq (X \times \mathbf{E}\mathbf{B}H)/\mathbf{B}H \end{displaymath} (where now all symbols stand for the corresponding simplicial sets as described above). Here \begin{displaymath} \mathbf{E} \mathbf{B}H \coloneqq (\mathbf{B}H)^{\Delta^1} \times_{\mathbf{B}G} * \end{displaymath} is a model for the total space of the [[universal principal infinity-bundle|universal principal 2-bundle]] over $\mathbf{B}H$. So the [[Kan complex]] $X \times_{\mathbf{B}H} \mathbf{E}\mathbf{B}H$ presents the ``rigidification'' of $X$ with respect to the chosen $\iota \colon \mathbf{B}H \to \mathbf{Aut}(X)$. \hypertarget{ForAnAlgebraicStack}{}\subsubsection*{{For an algebraic stack}}\label{ForAnAlgebraicStack} The standard example is the $\mathbb{G}_m$-rigidification of the [[Picard scheme|Picard stack]]. Suppose $X/k$ is an irreducible [[variety]] over a [[field]]. One can say that the failure of the Picard stack, $\mathcal{Pic}_X$ to be representable comes from the fact that objects in fiber categories have automorphisms by the multiplicative group, so we would like to kill this group. As pointed out in \emph{[[Picard scheme]]}, the relative Picard scheme is the [[sheafification]] of $\mathcal{Pic}_X$ and [[representable]]. Moreover $\mathcal{Pic}_X\to Pic_X$ is a $\mathbb{G}_m$-gerbe, so $\mathbb{G}_m$ satisfies the conditions to rigidify. By the [[universal property]], the rigidification is exactly $Pic_X$, so in this case we see that the sheafification and the rigidification by the inertia are the same. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dan Abramovich]], Alessio Corti, and [[Angelo Vistoli]], \emph{Twisted Bundles and Admissible Covers} (\href{http://arxiv.org/abs/math/0106211}{arXiv:0106211}) \end{itemize} \begin{itemize}% \item Matthieu Romagny, \emph{Group Actions on Stacks and Applications}, Michigan Math. J. Volume 53, Issue 1 (2005), 209-236 (\href{http://projecteuclid.org/euclid.mmj/1114021093}{Project Euclid}). \end{itemize} category: algebraic geometry [[!redirects rigidification]] \end{document}