\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{internalising_the_sets}{Internalising the sets}\dotfill \pageref*{internalising_the_sets} \linebreak \noindent\hyperlink{internalising_the_abelian_groups}{Internalising the abelian groups}\dotfill \pageref*{internalising_the_abelian_groups} \linebreak \noindent\hyperlink{rings_over_a_ring_rings}{Rings over a ring ($A$-rings)}\dotfill \pageref*{rings_over_a_ring_rings} \linebreak \noindent\hyperlink{higher_rings}{Higher rings}\dotfill \pageref*{higher_rings} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{types_of_rings}{Types of rings}\dotfill \pageref*{types_of_rings} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{ReferencesGeneral}{General}\dotfill \pageref*{ReferencesGeneral} \linebreak \noindent\hyperlink{ReferencesHistory}{History}\dotfill \pageref*{ReferencesHistory} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} A \emph{ring} (also: \emph{number ring}) is a basic structure in [[algebra]]: a [[set]] equipped with two [[binary operation]]s called \emph{addition} and \emph{multiplication}, such that the operation of addition forms an [[abelian group]] and the operation of multiplication a [[monoid]] structure which [[distributivity law|distributes]] over addition. All the familiar number systems such as the [[integer numbers]], [[rational numbers]], [[real numbers]], [[complex]] numbers are rings under the standard operations of addition and multiplication. Except for the first in this list they are indeed [[fields]], which are rings in which also the multiplication operation has an inverse for every element except 0 (the additive neutral element). Other basic examples of rings are the [[cyclic groups]] $\mathbb{Z}_n$ under their mod-$n$ operations inherited from the integers ([[cyclic rings]]); the [[polynomial rings]], etc. More abstractly, a [[ring]] is a [[monoid object|monoid]] [[internalization|internal to]] [[abelian groups]] (with their [[tensor product of abelian groups]]), and this perspective helps to explain the central relevance of the concept, owing to the fundamental nature of the notion of \emph{[[monoid objects]]}. Accordingly monoids internal to other [[abelian categories]] and more generally [[stable infinity-categories]] constitute generalizations of the notion of \emph{ring} that are of interest. Notably when abelian groups are generalized to their analogs in [[stable homotopy theory]], namely to [[spectra]], the corresponding internal monoids are [[E-infinity rings]], a basic structure in [[higher algebra]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[ring]] (unital and not-necessarily commutative) is an [[abelian group]] $R$ equipped with \begin{enumerate}% \item an element $1 \in R$ \item a [[bilinear map]], hence a [[group homomorphism]] \begin{displaymath} \cdot : R \otimes R \to R \end{displaymath} out of the [[tensor product of abelian groups]], \end{enumerate} such that $\cdot$ is [[associativity law|associative]] and [[unit law|unital]] with respect to 1. \end{defn} \begin{remark} \label{}\hypertarget{}{} The fact that the product is a [[bilinear map]] is the \textbf{[[distributivity law]]}: for all $r, r_1, r_2 \in R$ we have \begin{displaymath} r \cdot (r_1 + r_2) = r \cdot r_1 + r \cdot r_2 \end{displaymath} and \begin{displaymath} (r_1 + r_2) \cdot r = r_1 \cdot r + r_2 \cdot r \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} A (unital, non-commutative) \textbf{ring} is (equivalently) \begin{itemize}% \item a [[monoid object|monoid]] [[internalization|internal to]] [[Ab]] regarded as a [[monoidal category]] equipped with the [[tensor product of abelian groups]]; \item a [[pointed object|pointed]] [[enriched category|category enriched over]] [[Ab]] with a single [[object]]. \item a [[ringoid]] with a single [[object]]. \end{itemize} A \textbf{commutative} (unital) ring is a [[commutative monoid]] object in $(Ab, \otimes)$. \end{prop} \begin{remark} \label{}\hypertarget{}{} In usual ring theory people often talk about \textbf{[[nonunital rings]]} as well: multiplicative [[semigroups]] with additive [[abelian group]] structure where the multiplication is distributive toward addition; these are semigroup objects in $Ab$. As in the unital case, if the semigroup is abelian then the ring is said to be \textbf{commutative nonunital}. Note the adjective `nonunital' is an example of the [[red herring principle]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} If one removes the assumption that the additive group is abelian but retains the remaining ring axioms, the result is still a ring. (Expand $(1 + a)(1 + b)$ in two different ways, and cancel to conclude $a + b = b + a$.) The result is false for nonunital rings: for any group $(G, +)$ we could define multiplication to be the [[constant function]] at the additive identity, and all the axioms except additive commutativity are trivially satisfied. \end{remark} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} It is possible to [[internalization|internalise]] the notion of ring in at least two different ways. Either one can replace the [[Set|category of sets]] in the classical definition with another category $C$ -- see [[ring object]] -- , or one can replace [[Ab]] in the fancy definition with another category $M$. \hypertarget{internalising_the_sets}{}\subsubsection*{{Internalising the sets}}\label{internalising_the_sets} If $C$ is a [[cartesian monoidal category]], then any [[Lawvere theory]] may be internalised in $C$. The theory of rings is an example, so we can speak of \emph{ring objects} in $C$. Then a ring object in $Set$ is simply a ring. (This works whether your rings are unital or nonunital, commutative or noncommutative, etc.) However, not every notion of internal ring takes this form. The theory of rings is a combination of a monoid (or semigroup, if nonunital) and an abelian group structure. Thus, ring objects are algebras over a composed [[operad]] (or [[monad]]) of a monoid operad and an abelian group operad, using a standard [[distributive law]] for that situation in the sense of operads (or monads), which corresponds to the usual distributive law in the classical definition of a ring. A particular example of this is a ring in a [[topos]]. In a topos one usually alternatively defines a ring object by the standard set-theoretic definition of a ring, and interpret the formulas in the sense of topos-theoretic semantics. Picking a ring object $R$ in a [[topos]] $\mathcal{T}$ promotes it into a [[ringed topos]]. In cartesian categories one can also define the structure of an (abelian) group object as the lifting of the correspoding [[representable presheaf]] to a presheaf into (abelian) groups. This kind of lifting of some algebraic structure in sets to algebraic structure in a cartesian category makes sense when some category of algebras creates the limits needed to define them in sets. \hypertarget{internalising_the_abelian_groups}{}\subsubsection*{{Internalising the abelian groups}}\label{internalising_the_abelian_groups} If $M$ is a [[monoidal category]], then we can speak of [[monoid objects]] in $M$. However, we usually want $M$ to be somewhat like $Ab$ to think of monoid objects in $M$ as internal rings. For example, if $M$ is the category of abelian [[group objects]] in a cartesian monoidal category $C$, then we recreate the notion of ring object in $C$ from above. Or, if $M$ is any [[Ab-enriched category]], then it behaves enough like $Ab$ that we may consider its monoid objects as internal rings. There are yet other examples, however: a [[ring spectrum]] is a monoid object in [[spectra]], even though these are not $Ab$-enriched. Other examples are [[simplicial ring]]s (as monoids in [[simplicial abelian group]]s) and [[dg-ring]]s, as well as the $A$-rings below. \hypertarget{rings_over_a_ring_rings}{}\subsubsection*{{Rings over a ring ($A$-rings)}}\label{rings_over_a_ring_rings} If $K$ is a commutative ring (or especially a [[field]]), then an [[associative algebra]] over $K$ is a monoid object in $K$-[[Mod]]; this is a special case of the previous section. If $A$ is a noncommutative ring, then a \textbf{ring over $A$}, or simply an \textbf{$A$-ring}, is a monoid object $R$ in $A$-[[Bimod]] (that is, in $_A Mod _A$). Every $A$-ring is a ring in the usual sense, in the sense that there is an obvious [[forgetful functor]] to the usual rings. In fact the unit map $A \to R$ is a morphism of rings, and the category of $A$-rings is precisely the [[coslice category]] or under-category $A/Ring$. Thus by category-theoretic rules, one might be led to unconventionally call $A$-rings ``rings \emph{under} $A$''. Unfortunately, standard name for $A$-rings is ``rings \emph{over} $A$'', like conventionally calling $k$-algebras the ``algebras \emph{over} $K$''. Unlike for the $k$-algebras, the multiplication $R\times R\to R$ which is the morphism of $A$-[[bimodules]], is not (left) $A$-linear in the \emph{second} factor, but only $A^{op}$-linear (that is, $A$-linear on the right). In other words, the axiom for $K$-algebras $k (r s) = r (k s)$ is not true, for $k\in A$, $r,s\in R$, although $k (r s) = (k r) s$ and $(r s) k = r (s k)$ do hold. Both for a discussion for under-over and also for this difference between $K$-algebras and $A$-rings see the Caf\'e{}'s \href{http://golem.ph.utexas.edu/category/2008/12/a_quick_algebra_quiz.html}{quick algebra quiz}. A dual notion to an $A$-ring is an $A$-[[coring]]. The structure of an $A\otimes A^{op}$-ring $(R,\mu,\eta)$ is determined by the structure of $A$ as a ring, together with the two natural homomorphisms of rings $s = \eta(-\otimes 1_A):A\to R$ and $t=\eta(1_A\otimes -):A^{op}\to R$ which have commuting images ($s(a)t(a')=t(a')s(a)$, for all $a,a'\in A$). \hypertarget{higher_rings}{}\subsubsection*{{Higher rings}}\label{higher_rings} By replacing in the sentence ``a ring is a [[monoid]] in [[Ab]]'' the [[abelian category]] [[Ab]] with a [[higher category theory|higher category]] of \emph{symmetric monoidal} higher groupoids, one obtains higher notion of rings. Of particular interest is the maximal case of symmetric monoidal [[∞-groupoid]]s and, even more generally, that of [[spectrum|spectra]]. A [[monoid in an (∞,1)-category]] in the [[stable (∞,1)-category of spectra]] is an [[A-infinity-ring]] or [[associative ring spectrum]]. The commutative case is a [[commutative monoid in an (∞,1)-category]]: an [[E-infinity ring]] or [[commutative ring spectrum]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item The [[integers]] $\mathbb{Z}$ are a ring under the standard addition and multiplication operation. \item For each $n$, this induces a ring structure on the [[cyclic group]] $\mathbb{Z}_n$, given by operations in $\mathbb{Z}$ modulo $n$ ([[cyclic rings]]). \item The [[rational numbers]] $\mathbb{Q}$, [[real numbers]] $\mathbb{R}$ and [[complex numbers]] are rings under their standard operations, in fact these are even \emph{[[fields]]}. \end{itemize} \end{example} \begin{example} \label{}\hypertarget{}{} For $R$ a ring, the [[polynomials]] \begin{displaymath} r_0 + r_1 x + r_2 x^2 + \cdots + r_n x^n \end{displaymath} (for arbitrary $n \in\mathbb{N}$) in a [[variable]] $x$ with [[coefficients]] in $R$ form another ring, the \emph{[[polynomial ring]]} denoted $R[x]$. This is the [[free construction|free]] $R$-[[associative algebra]] on a single generator $x$. \end{example} \begin{example} \label{}\hypertarget{}{} For $R$ a ring and $n \in \mathbb{N}$, the set $M(n,R)$ of $n \times n$-[[matrices]] with [[coefficients]] in $R$ is a ring under elementwise addition and [[matrix multiplication]]. \end{example} \begin{example} \label{}\hypertarget{}{} For $X$ a [[topological space]], the set of [[continuous functions]] $C(X,\mathbb{R})$ or $C(X,\mathbb{C})$ with values in the [[real numbers]] or [[complex numbers]] is a ring under pointwise (points in $X$) addition and multiplication. \end{example} \begin{example} \label{}\hypertarget{}{} For $X$ a [[topological space]], the [[direct sum]] of its [[ordinary cohomology]] groups $H^\bullet(X,\mathbb{Z})$ forms a ring whose multiplication operation is the [[cup product]]. This is a [[graded object|graded ring]], graded by the cohomological degree. \end{example} \hypertarget{types_of_rings}{}\subsection*{{Types of rings}}\label{types_of_rings} \begin{itemize}% \item [[integral domain]] \item [[principal ideal domain]] \item [[Noetherian ring]] \item many more\ldots{} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoid]], [[monoid object]] \item [[nonunital ring]], [[nonassociative ring]] \item [[group]], [[group object]] \item \textbf{ring}, [[E-∞ ring]] \begin{itemize}% \item [[associative algebra]] \item [[commutative ring]], [[commutative algebra]] \item [[ring object]] \begin{itemize}% \item [[topological ring]] \item [[normed ring]] \end{itemize} \item [[localization of a ring]] \item [[filtered ring]], [[associated graded ring]] \item [[w-contractible ring]] \item [[core of a ring]] \end{itemize} \item [[ideal]] \item [[prime ring]] \item [[spectrum of a commutative ring]] \begin{itemize}% \item [[affine scheme]], [[affine scheme]], [[spectral topological space]] \end{itemize} \item [[ring extension]], \begin{itemize}% \item [[infinitesimal extension]] [[nilradical]], [[reduced ring]], \end{itemize} \item [[near-ring]] \item [[module]], [[bimodule]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{ReferencesGeneral}{}\subsubsection*{{General}}\label{ReferencesGeneral} Lecture notes include \begin{itemize}% \item Arno Fehm, \emph{Ringe} (\href{http://www.math.uni-konstanz.de/~fehm/teaching/algebra/geyer2.pdf}{pdf}) (in German) \end{itemize} \hypertarget{ReferencesHistory}{}\subsubsection*{{History}}\label{ReferencesHistory} [[Richard Dedekind]] had introduced the concept today called \emph{ring} under the name \emph{Ordnung} (Ger: order, as in \href{http://en.wikipedia.org/wiki/Order_%28biology%29}{taxonomic order}). The word \emph{Zahlring} (Ger: number ring/ring of numbers) for this was introduced in section 9.31 of \begin{itemize}% \item [[David Hilbert]], \emph{Die Theorie der algebraischen Zahlk\"o{}rper}, Jahresbericht der Deutschen Mathematiker-Vereinigung 4 (1879) \end{itemize} There, the word ring just appears with a footnote mentioning Dedekind's use of the word ``Ordnung'', no further motivation is given. So probably Hilbert meant to use ``ring'' as in ``collection of things holding together'', not in the sense of circles or loops (as one might guess from the rings of [[cyclic groups]] $\mathbb{Z}_n$). The first abstract axiomatic description of rings is in \begin{itemize}% \item Adolf Fraenkel, Journal f\"u{}r die reine und angewandte Mathematik \textbf{145} (1914) \end{itemize} which however contains some additional axioms not used anymore. The set of axioms in its modern form appears first in \begin{itemize}% \item [[Emmy Noether]], \emph{Ideal Theory in Rings}, Mathematische Annalen \textbf{83} (1921) \end{itemize} For historical accounts see \begin{itemize}% \item I. Kleiner, \emph{From numbers to rings: the early history of ring theory}, Elemente der Mathematik 53 (1998) 18-35. (\href{http://dx.doi.org/10.5169/seals-3627}{web}) \item \emph{The development of ring theory} (\href{http://www-history.mcs.st-and.ac.uk/HistTopics/Ring_theory.html}{pdf}) [[!redirects rings]] \end{itemize} [[!redirects unital ring]] [[!redirects unital rings]] [[!redirects ring with unit]] [[!redirects rings with unit]] [[!redirects rings with units]] [[!redirects ring with identity]] [[!redirects rings with identity]] [[!redirects rings with identities]] [[!redirects associative ring]] [[!redirects associative rings]] [[!redirects associative unital ring]] [[!redirects associative unital rings]] [[!redirects noncommutative ring]] [[!redirects noncommutative rings]] [[!redirects non-commutative ring]] [[!redirects non-commutative rings]] [[!redirects commutative ring]] [[!redirects commutative rings]] [[!redirects commutative unital ring]] [[!redirects commutative unital rings]] \end{document}