\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{scalar field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{free_scalar_field}{Free scalar field}\dotfill \pageref*{free_scalar_field} \linebreak \noindent\hyperlink{covariant_phase_space}{Covariant phase space}\dotfill \pageref*{covariant_phase_space} \linebreak \noindent\hyperlink{on_minkowski_spacetime}{On Minkowski spacetime}\dotfill \pageref*{on_minkowski_spacetime} \linebreak \noindent\hyperlink{on_general_spacetimes}{On general spacetimes}\dotfill \pageref*{on_general_spacetimes} \linebreak \noindent\hyperlink{interacting_scalar_field}{Interacting scalar field}\dotfill \pageref*{interacting_scalar_field} \linebreak \noindent\hyperlink{on_minkowski_spacetime_2}{On Minkowski spacetime}\dotfill \pageref*{on_minkowski_spacetime_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[physics]], a \textbf{scalar field} is a [[field (physics)|field]] on [[spacetime]]/[[worldvolume]] which is simply a [[function]] with values in the [[field of scalars]], typically the [[real numbers]] $\mathbb{R}$ or [[complex numbers]] $\mathbb{C}$, sometimes the [[quaternions]] $\mathbb{H}$. Hence it is a [[field (physics)|field]] encoded by a [[field bundle]] which is a [[trivial line bundle]]. One fundamental (complex, charged) scalar field is seen in [[experiment]], the \emph{[[Higgs field]]}, which is one component of the [[standard model of particle physics]]. A widely hypothesized scalar field is the [[inflaton]] field in [[model (physics)|models]] of [[cosmic inflation]], which however remains speculative and might in any case be an effective compound of more fundamental fields. But scalar fields also serve as a key toy example in theoretical studies of [[field theory]], such as in [[phi{\tt \symbol{94}}4 theory]] or in the [[Ising model]]. The usefulness of the scalar field as a toy example of [[classical field theory]] and [[perturbative quantum field theory]] is due to it already exhibiting much of the core structure of [[field theory]]. For instance the general formulas for [[propagators]] and the [[S-matrix]] of general [[local field theories]] are structurally those of the scalar field, just with some more fairly evident [[representation theory|representation theoretic]] structure thrown in. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{free_scalar_field}{}\subsubsection*{{Free scalar field}}\label{free_scalar_field} We discuss here the [[free field|free]] [[scalar field]] on general [[spacetimes]], hence the scalar field subject to the [[force]] of a [[background field]] of [[gravity]], but not [[interaction|interacting]] with itself. This means that its [[local Lagrangian density]] is [[quadratic form|quadratic]] in the fields and its first derivatives (def. \ref{LocalLagrangianOfFreeScalarField}) and its [[equation of motion]] is the [[Klein-Gordon equation]] (hence the [[wave equation]] in the case of vanishing [[mass]]) (prop. \ref{FreeScalarFieldEOM} below). The [[Poisson bracket]] on the [[covariant phase space]] of this system (prop. \ref{FreeScalarFieldEOM} below) turns out to have as [[integral kernel]] the [[causal propagator]] of the [[Klein-Gordon operator]] (i.e. the [[Green function]] whose [[support of a distribution|support]] is inside the [[light cone]]). Accordingly, the other associated [[Green functions]] of the [[Klein-Gordon operator]] (the ``[[propagators]]'', such as the [[Feynman propagator]]) govern the [[perturbative quantum field theory]] of the scalar field (see at \emph{[[S-matrix]]} for more). \hypertarget{covariant_phase_space}{}\paragraph*{{Covariant phase space}}\label{covariant_phase_space} Recall that a \emph{[[classical field theory|classical]] [[local field theory]]} is for some prescribed class of [[manifolds]] $\Sigma$ of given [[dimension]] $p+1 \in \mathbb{N}$ interpreted as [[spacetimes]]/[[worldvolumes]]: \begin{enumerate}% \item a choice of [[fiber bundle]] $E \to\Sigma$, called the \emph{[[field bundle]]}; \item a choice $L \in \Omega^{p+1,0}(J^\infty(E))$ of [[horizontal differential form]] of degree $p+1$ on the [[jet bundle]] of the field bundle, called the \emph{[[local Lagrangian density]]}. \end{enumerate} Given a [[classical field theory|classical]] [[local field theory]] defined by a [[local Lagrangian density]] $L \in \Omega^{p+1,0}(J^\infty(E))$, then \begin{enumerate}% \item the [[configuration space]] is the [[smooth space|smooth]] [[space of sections]] $\Gamma_X(E)$ of the [[field bundle]]; \item the [[equations of motion]] is the [[partial differential equation]] on elements $\phi \in \Gamma_X(E)$ given by \begin{displaymath} (\delta_{EL} L)(j^\infty \phi) = 0 \,, \end{displaymath} where \begin{enumerate}% \item $\delta_{EL} \;\colon\; \Omega^{n,0}(J^\infty_X(E)) \to \mathcal{F}^1(J^\infty_X(E))$ denotes the \emph{[[Euler-Lagrange operator]]} \item $j^\infty \;\colon\; \Gamma_X(E) \longrightarrow \Gamma_X(J^\infty_X(E))$ denotes [[jet prolongation]]. \end{enumerate} \item The [[covariant phase space]] $(Sol_{\delta_{EL}L = 0}, d\theta)$ is the subspace $Sol_{\delta_{EL} L = 0} \subset \Gamma_X(E)$ of solutions to the [[equations of motion]], equipped with the canonical [[presymplectic form]]. \end{enumerate} \hypertarget{on_minkowski_spacetime}{}\paragraph*{{On Minkowski spacetime}}\label{on_minkowski_spacetime} We discuss the [[covariant phase space]] of the [[free field|free]] scalar field on [[Minkowski spacetime]]. For a more detailed exposition see at \emph{[[geometry of physics -- A first idea of quantum field theory]]}. \begin{defn} \label{LagrangianForFreeScalarFieldOnMinkowskiSpacetime}\hypertarget{LagrangianForFreeScalarFieldOnMinkowskiSpacetime}{} \textbf{([[local Lagrangian density]] for [[free field|free]] [[scalar field]] on [[Minkowski spacetime]])} For $p \in \mathbb{N}$, let [[spacetime]] $\Sigma \coloneqq \mathbb{R}^{p,1} = (\mathbb{R}^d, \eta)$ be [[Minkowski spacetime]] of [[dimension]] $p + 1$, where $\eta$ denotes the Minkowski [[metric tensor]] of [[signature of a quadratic form|signature]] $(-,+,\cdots, +)$. We write $\mathrm{dvol}_\Sigma \in \Omega^{p+1}(\Sigma)$ for the corresponding [[volume form]] and $\{x^\mu \colon \Sigma \to \mathbb{R}\}_{\mu = 0}^p$ for the canonical [[coordinate functions]]. Let the [[field bundle]] $E \to \Sigma$ be the [[trivial vector bundle|trivial]] [[real line bundle]] over $\Sigma$. Then its [[jet bundle]] $J^\infty E$ has canonical coordinates \begin{displaymath} \{ \{x^\mu\}, \phi, \{\phi_{,\mu}\}, \{\phi_{,\mu \nu}\}, \cdots \} \,. \end{displaymath} In these coordinates, the [[local Lagrangian density]] \begin{displaymath} L \in \Omega^{p+1,0}(\Sigma) \end{displaymath} defining the [[free field|free]] [[scalar field]] of [[mass]] $m \in [0,\infty)$ on $\Sigma$ is \begin{displaymath} L \coloneqq \tfrac{1}{2} \left( \eta^{\mu \nu} \phi_{,\mu} \phi_{,\nu} + m^2 \phi^2 \right) \mathrm{dvol}_\Sigma \,. \end{displaymath} \end{defn} \begin{prop} \label{FreeScalarFieldEOM}\hypertarget{FreeScalarFieldEOM}{} \textbf{([[covariant phase space]] of [[free field|free]] [[scalar field]])} In the situation of def. \ref{LagrangianForFreeScalarFieldOnMinkowskiSpacetime} for $\Phi : \Sigma \to \mathbb{R}$ the $\phi$-component of a [[section]] of the [[field bundle]], its [[equation of motion]] is the [[Klein-Gordon equation]] \begin{displaymath} \left(\eta^{\mu \nu} \partial_\mu \partial_\nu + m^2 \right) \Phi = 0 \,. \end{displaymath} Moreover, the induced [[pre-symplectic current]] $\omega \in \Omega^{p-1,2}(E)$ is, in local coordinates, \begin{displaymath} \omega = \left(\eta^{\mu \nu} d_V \phi_{,\mu} \wedge d_V \phi \right) \wedge \iota_{\partial_\nu} dvol_{\Sigma} \end{displaymath} and hence the induced [[symplectic form]] on the [[covariant phase space]] of the free scalar field takes two [[smooth function]] $w_1,w_2 \in C^\infty(\Sigma)$, regarded as [[tangent vectors]] at zero to \begin{displaymath} \mathbf{\Omega}_{\Sigma_{p}}(w_1, w_2) \;=\; \int_{\Sigma_{p}} \left( (\partial_n w_1) w_2 - w_1 \partial_n w_2 \right) dvol_{\Sigma_{p}} \,, \end{displaymath} where $\Sigma_{p} \hookrightarrow \Sigma$ is any [[Cauchy surface]] and where $n \in N \Sigma_{p}$ denotes its time-like normal vector field. \end{prop} \begin{proof} We need to show that [[Euler-Lagrange operator]] $\delta_{EL} \colon \Omega^{p+1,0}(\Sigma) \to \Omega^{p+1,1}_S(\Sigma)$ takes the [[local Lagrangian density]] for the [[free field|free]] [[scalar field]] to \begin{displaymath} \delta_EL L \;=\; \left( \eta^{\mu \nu} \phi_{,\mu \nu} + m^2 \phi \right) d_V \phi \wedge \mathrm{dvol}_\Sigma \,. \end{displaymath} First of all, the result of applying the [[variational bicomplex|vertical differential]] to the local Lagrangian density is \begin{displaymath} d_V L = \left( \eta^{\mu \nu} \phi_{,\mu} d_V \phi_{,\nu} + m^2 \phi d_V \phi \right) \wedge \mathrm{dvol}_\Sigma \,. \end{displaymath} By definition of the [[Euler-Lagrange operator]], in order to find $\mathrm{EL}$ and $\theta$, we need to exhibit this as the sum of the form $(-) \wedge d_V \phi - d_H \theta$. The key to find $\theta$ is to realize $d_V \phi_{,\nu}\wedge \mathrm{dvol}_\Sigma$ as a [[horizontal derivative]]. Since $d_H \phi = \phi_{,\mu} d x^\mu$ this is accomplished by \begin{displaymath} d_V \phi_{,\nu} \wedge \mathrm{dvol}_\Sigma = d_V d_H \phi \wedge \iota_{\partial_\nu} \mathrm{dvol}_\Sigma \end{displaymath} Hence we may set \begin{displaymath} \theta \coloneqq \eta^{\mu \nu} \phi_{,\mu} d_V \phi \wedge \iota_{\partial_\nu} \mathrm{dvol}_\Sigma \,, \end{displaymath} because with this we have \begin{displaymath} d_H \theta = \eta^{\mu \nu} \left( \phi_{,\mu \nu} d_V \phi - \eta^{\mu \nu} \phi_{,\mu} d_V \phi_{,\nu} \right) \wedge \mathrm{dvol}_\Sigma \,. \end{displaymath} In conclusion this yields the decomposition of the vertical differential of the Lagrangian density \begin{displaymath} d_V L = \underset{ = \delta_{EL} L }{ \underbrace{ \left( \eta^{\mu \nu} \phi_{,\mu \nu} + m^2 \phi \right) d_V \phi \wedge \mathrm{dvol}_\Sigma } } - d_H \theta \,, \end{displaymath} which shows that $\delta_{EL} L$ is as claimed, and that $\theta$ is a presymplectic potential current. Hence the presymplectic current itself is \begin{displaymath} \begin{aligned} \omega &\coloneqq d_V \theta \\ & = d_V \left( \eta^{\mu \nu} \phi_{,\mu} d_V \phi \wedge \iota_{\partial_\nu} \mathrm{dvol}_\Sigma \right) \\ & = \left(\eta^{\mu \nu} d_V \phi_{,\mu} \wedge d_V \phi \right) \wedge \iota_{\partial_\nu} dvol_{\Sigma} \end{aligned} \,. \end{displaymath} For $\Sigma_p \hookrightarrow \Sigma$ a [[Cauchy surface]], the [[transgression of variational differential forms|transgression]] of this presymplectic current to the [[infinitesimal neighbourhood]] of $\Sigma$ is \begin{displaymath} \begin{aligned} \omega_{\Sigma_{p}}(w_1, w_2) & = \left( \int_{\Sigma_p} \left( \eta^{\mu \nu} \mathbf{d} \partial_\mu \phi \wedge \mathbf{d} \phi \right) \iota_{\partial_\nu} dvol_\Sigma \right) (w_1, w_2) \\ & = \int_{\Sigma_{p}} \left( (\partial_n w_1) w_2 - w_1 \partial_n w_2 \right) dvol_{\Sigma_{p}} \end{aligned} \end{displaymath} \end{proof} \begin{example} \label{PoissonBracketsOverMinkowskiSpacetime}\hypertarget{PoissonBracketsOverMinkowskiSpacetime}{} \textbf{([[Poisson brackets]] over [[Minkowski spacetime]])} Consider the covariant phase space over [[Minkowski spacetime]] of dimension $p+1$ as in def. \ref{LagrangianForFreeScalarFieldOnMinkowskiSpacetime}, with [[pre-symplectic current]] according to prop. \ref{FreeScalarFieldEOM} given by \begin{displaymath} \omega = \eta^{\mu \nu} d_V \phi_{,\mu} \wedge d_V \phi \wedge \iota_{\partial_\mu} dvol_\Sigma \, \end{displaymath} The corresponding [[Poisson bracket Lie n-algebra|Poisson bracket Lie (p+1)-algebra]] has in degree 0 [[Hamiltonian forms]] such as \begin{displaymath} Q \coloneqq \phi \iota_{\partial_0} dvol_\Sigma \in \Omega^{p,0}(E) \end{displaymath} and \begin{displaymath} P \coloneqq \eta^{\mu \nu} \phi_{,\mu} \iota_{\partial_\nu} dvol_{\Sigma} \in \Omega^{p,0}(E) \,. \end{displaymath} The corresponding [[Hamiltonian vector fields]] are \begin{displaymath} v_P = \partial_{\phi_{,0}} \end{displaymath} and \begin{displaymath} v_Q = - \partial_{\phi} \,. \end{displaymath} Hence the corresponding bracket is \begin{displaymath} \{Q,P\} = \iota_{v_Q} \iota_{v_P} \omega = \iota_{\partial_0} dvol_\Sigma \,. \end{displaymath} More generally for $b_1, b_2 \in C^\infty_c(\Sigma)$ two [[bump functions]] then \begin{displaymath} \{ b_1 Q, b_2 P \} = \pm b_1 b_2 \iota_{\partial_0} dvol_\Sigma \,. \end{displaymath} Upon [[transgression of variational differential forms|transgression]] to the [[Cauchy surface]] $\Sigma^t_{p} \coloneqq \{x \in \Sigma \vert x^0 = t \}$ this yields the [[Poisson bracket]] \begin{displaymath} \left\{ \int_{\Sigma_p} b_1(\vec x) \phi(t,\vec x) \iota_{\partial_0} dvol_\Sigma(x) d^p \vec x \;,\; \int_{\Sigma_p} b_2(\vec x) \partial_0 \phi(t,\vec x) \iota_{\partial_0} dvol_\Sigma(\vec x) \right\} \;=\; \int_{\Sigma_p} b_1(\vec x) b_2(\vec x) \iota_{\partial_0} dvol_\Sigma(\vec x) d^p \vec x \,. \end{displaymath} where now \begin{displaymath} \phi(x), \partial_0 \phi(x) : PhaseSpace(\Sigma_p^t) \to \mathbb{R} \end{displaymath} are the point-evaluation functions ([[functionals]]), which act on a field configuration $\Phi \in \Gamma_\Sigma(E) = C^\infty(\Sigma)$ as \begin{displaymath} \phi(x)(\Phi) \coloneqq \Phi(x) \phantom{AAAAAAAA} \partial_0 \phi(x) (\Phi) \coloneqq \partial_0 \Phi(x) \,. \end{displaymath} Notice that these point-evaluation functions themselves do not arise as the transgression of elements in $\Omega^{p,0}(E)$, only their smearings such as $\int_{\Sigma_p} b_1 \phi dvol_{\Sigma_p}$ do. Nevertheless we may express the above Poisson bracket conveniently via the [[integral kernel]] \begin{equation} \{\phi(t,\vec x), \phi(t,\vec y) \} = \delta(\vec x - \vec y) \,. \label{PoissonBracketOfScalarFieldPointEvaluationOnMinkowskiSpacetime}\end{equation} \end{example} More generally one may express the integral kernel for the Poisson bracket of evaluation functions for different values of $t$. Notice that for each time interval $[t_1, t_2]$ we have a [[Lagrangian correspondence]] \begin{displaymath} \itexarray{ && Trajectories([t_1,t_2]) \\ & {}^{\mathllap{ \Phi(-) \mapsto ( \Phi(t_1,-), \partial_0 \Phi(t_1,-) ) }}\swarrow && \searrow^{\mathrlap{ \Phi(-) \mapsto ( \Phi(t_2,-), \partial_0 \Phi(t_2,-) ) }} \\ PhaseSpace(\Sigma^{t_1}_p) && && PhaseSpace(\Sigma^{t_2}_p) \\ & {}_{\mathllap{\Omega^{t_1}}}\searrow && \swarrow_{\mathrlap{\Omega^{t_2}}} \\ && \mathbf{\Omega}_{cl}^2 } \,, \end{displaymath} where $Trajectories([t_1,t_2])$ is the space of solutions to the [[Klein-Gordon equation]] on $[t_1,t_2] \times \mathbb{R}^p \subset \mathbb{R}^{p,1}$. There is a unique function on $PhaseSpace(\Sigma^{t_1}_p)$ whose pullback to $Trajectories([t_1,t_2])$ is the evaluation function $\phi(x)$ for any $x^0 \in [t_1,t_2]$. By convenient abuse of notation, we also call that function $\phi(x)$. \begin{prop} \label{IntegralKernelForPoissonBracketOfFreeScalarFieldOnMinkowskiSpacetime}\hypertarget{IntegralKernelForPoissonBracketOfFreeScalarFieldOnMinkowskiSpacetime}{} \textbf{([[integral kernel]] for [[Poisson bracket]] on [[Minkowski spacetime]] is the [[causal propagator]])} The integral kernel on $\mathbb{R}^{p,1}$ for the Poisson bracket of the scalar field over [[Minkowski spacetime]] (example \ref{PoissonBracketsOverMinkowskiSpacetime}) is the \emph{[[causal propagator]]} \begin{displaymath} \Delta \;\in\; \mathcal{D}'(\Sigma \times \Sigma) \end{displaymath} (also known as the \emph{[[Pauli-Jordan distribution]]} or \emph{[[Peierls bracket]]}) on Minkowski spacetime: \begin{displaymath} \begin{aligned} \{ \phi(x), \phi(y) \} & = \Delta(x,y) \\ & \coloneqq -i (2\pi)^{-p} \int \tfrac{1}{2 E(\vec k)}\left( e^{- i E(\vec k) (x-y)^0 - \vec k \cdot (\vec x - \vec y)} - e^{+ i E(\vec k) (x-y)^0 + \vec k \cdot (\vec x - \vec y)} \right) d^p \vec k \\ & = -i (2\pi)^{-p} \int \delta( k_\mu k^\mu + m^2 ) sgn( k_0 ) e^{ - i k_\mu (x-y)^\mu } d^{p+1} k \,. \end{aligned} \end{displaymath} \end{prop} (e. g. \hyperlink{Scharf01}{Scharf 01 (1.1.13)}) \begin{proof} By [[Fourier transform]] the general solution to the [[Klein-Gordon equation]] may be expressed in the form \begin{displaymath} \Phi(x) \;=\; (2\pi)^{-p} \int Amp(k) e^{- i k_\mu x^\mu } \delta( k_\mu k^\mu + m^2 ) d^{p+1} k \,, \end{displaymath} where $Amp(k) \in \mathbb{C}$ is the \emph{complex amplitude} of the $k$th mode $(k \in \mathbb{R}^{p+1})$. We may split this into the contributions with positive and those with negative [[energy]] $k_0$ by decomposing the integral over $k_0$ as \begin{displaymath} \begin{aligned} \Phi(x) & = \phantom{+} (2\pi)^{-p/2} \int_0^\infty \int Amp(k_0, \vec k) e^{- i k_0 x^0 - i \vec k \cdot \vec x} \delta(- k_0^2 + \vec k + m^2) d^p \vec k \, d k_0 \\ & \phantom{=} + (2\pi)^{-p/2} \int_0^\infty \int Amp(-k_0, \vec k) e^{+ i k_0 x^0 - i \vec k \cdot \vec x} \delta(-k_0^2 + \vec k^2 + m^2) d^p \vec k \, d k_0 \,. \end{aligned} \end{displaymath} By [[changing integration variables]] via $k_0 = +\sqrt{ h }$ this yields \begin{displaymath} \begin{aligned} \Phi(x) & = \phantom{+} (2\pi)^{-p/2} \int_0^\infty \int Amp(\sqrt{h}, \vec k) e^{- i \sqrt{h} x^0 - i \vec k \cdot \vec x} \delta(- h + \vec k + m^2) d^p \vec k \, \frac{d h}{2\sqrt{h}} \\ & \phantom{=} + (2\pi)^{-p/2} \int_0^\infty \int Amp(- \sqrt{h}, \vec k) e^{+ i \sqrt{h} x^0 - i \vec k \cdot \vec x} \delta(- h + \vec k^2 + m^2) d^p \vec k \, \frac{d h}{2 \sqrt{h}} \\ & = \phantom{+} (2\pi)^{-p/2} \int Amp(E(\vec k), \vec k) e^{- i E(\vec k) x^0 - i \vec k \cdot \vec x} d^p \vec k \\ & \phantom{=} + (2\pi)^{-p/2} \int Amp(-E(\vec k), \vec k) e^{+ i E(\vec k) x^0 - i \vec k \cdot \vec x} d^p \vec k \end{aligned} \end{displaymath} where we defined the \emph{on-shell [[energy]]} \begin{displaymath} E(\vec k) \coloneqq + \sqrt{ \vec k^2 + m^2 } \,. \end{displaymath} It is convenient to also change variables $\vec k \mapsto - \vec k$ in the second integral. This yields \begin{displaymath} \begin{aligned} \Phi(x) &= \phantom{+} (2\pi)^{-p/2} \int Amp(E(\vec k), \vec k) e^{- i E(\vec k) x^0 - i \vec k \cdot \vec x} d^p \vec k \\ & \phantom{=} + (-1)^p (2\pi)^{-p/2} \int Amp(-E(\vec k), \vec k) e^{+ i E(\vec k) x^0 + i \vec k \cdot \vec x} d^p \vec k \end{aligned} \,. \end{displaymath} Since $\Phi$ is real-valued, it follows that under [[complex conjugation]] $(-)^\ast$ the amplitudes are related by \begin{displaymath} Amp(E(\vec k), \vec k)^\ast = (-1)^p Amp(-E(\vec k), \vec k) \,. \end{displaymath} We abbreviate (cf. \hyperlink{Scharf01}{Scharf 01 (1.1.18)}) \begin{displaymath} A(\vec k) \coloneqq E(\vec k) Amp(E(\vec k), \vec k) \,, \end{displaymath} where the prefactor just serves to make some of the following formulas come out conveniently. With this the general solution to the Klein-Gordon equation is finally of the form \begin{equation} \Phi(x) = (2\pi)^{-p/2} \int \frac{1}{\sqrt{2 E(\vec k)}} \left( A(\vec k) e^{- i E(\vec k) x^0 - i \vec k \cdot \vec x} + A(\vec k)^\ast e^{+ i E(\vec k) x^0 + i \vec k \cdot \vec x} \right) d^p \vec k \,. \label{FourierModeExpansionOfScalarFieldOnminkowskiSpacetime}\end{equation} and hence its time derivative is \begin{displaymath} \partial_0 \Phi(x) = (2\pi)^{-p/2} \int -i \sqrt{E(k)/2} \left( A(\vec k) e^{- i E(\vec k) x^0 - i \vec k \cdot \vec x} - A(\vec k)^\ast e^{+ i E(\vec k) x^0 + i \vec k \cdot \vec x} \right) d^p \vec k \,. \end{displaymath} This allows to express the modes in terms of the value of the field and its time derivative at $t = 0$: \begin{displaymath} A(\vec k) = (2 \pi)^{-p/2} \int \left( \sqrt{E(k)/2}\Phi(0,\vec x) + i \frac{1}{2\sqrt{E(k)}} \partial_0 \Phi(0,\vec x)\right) \exp( i \vec k \cdot \vec x ) d^p \vec x \,. \end{displaymath} As in example \ref{PoissonBracketsOverMinkowskiSpacetime} we denote the corresponding evaluation functional \begin{displaymath} a(\vec k) \;\colon\; C^\infty(\Sigma) \longrightarrow \mathbb{C} \end{displaymath} by the corresponding lower case symbol: \begin{displaymath} a(\vec k) \;\coloneqq\; (2 \pi)^{-p/2} \int \left( \sqrt{E(k)/2}\phi(\vec x) + i \frac{1}{\sqrt{2 E(k)}} \partial_0 \phi(\vec x)\right) \exp( i \vec k \cdot \vec x ) d^p \vec x \,. \end{displaymath} With the Poisson bracket kernel $\{\phi(\vec x), \phi(\vec y)\} = \delta(\vec x - \vec y)$ from example \ref{PoissonBracketsOverMinkowskiSpacetime} \eqref{PoissonBracketOfScalarFieldPointEvaluationOnMinkowskiSpacetime}, it follow that the (integral kernel for the) Poisson bracket of these mode functionals is that of the [[canonical commutation relations]]: \begin{equation} \begin{aligned} \{ a(\vec k_1), a(\vec k_2)^\ast \} & = -i (2\pi)^{-p} \int \delta(\vec x_1 - \vec x_2) e^{i ( \vec k_1 \cdot \vec x_1 - \vec k_2 \cdot \vec x_2) } d \vec x_1 d\vec x_2 \\ & = -i (2\pi)^{-p} \int e^{i (\vec k_1 - \vec k_2) \cdot \vec x } d \vec x & = \\ & = -i \delta(\vec k_1 - \vec k_2) \,, \end{aligned} \label{CanonicalPoissonCommutationOfModesOfFreeScalarFieldOnMinkowskiSpacetime}\end{equation} where in the last step we used the [[Fourier transform]] representation of the [[delta distribution]] (\href{Dirac+distribution#FourierTransform}{this prop.}). In order to finally compute $\{\phi(x), \phi(y)\}$, it is convenient to break this up into two contributions: Write \begin{displaymath} \phi^{(+)}(x) \;\coloneqq\; (2\pi)^{-p/2} \int \frac{1}{\sqrt{2 E(\vec k)}} a(\vec k)^\ast e^{+ i E(\vec k) x^0 + i \vec k \cdot \vec x} d^p \vec k \phantom{AAAA} \phi^{(-)}(x) \;\coloneqq\; (2\pi)^{-p/2} \int \frac{1}{\sqrt{2 E(\vec k)}} a(\vec k) e^{- i E(\vec k) x^0 - i \vec k \cdot \vec x} d^p \vec k \end{displaymath} for the positive and negative energy contributions from the Fourier expansion in \eqref{FourierModeExpansionOfScalarFieldOnminkowskiSpacetime}, so that \begin{displaymath} \phi(x) = \phi^{(-)}(x) + \phi^{(+)}(x) \,. \end{displaymath} Using the [[canonical commutation relation]] of the mode functions \eqref{CanonicalPoissonCommutationOfModesOfFreeScalarFieldOnMinkowskiSpacetime}, we find \begin{equation} \begin{aligned} -i \omega(x,y) & \coloneqq \{ \phi^{(-)}(x), \phi^{(+)}(y) \} \\ &= -i (2\pi)^{-p} \int \tfrac{1}{2 E(\vec k)} e^{- i E(\vec k) (x-y)^0 - \vec k \cdot (\vec x - \vec y)} d^{p} \vec k \\ & = -i (2\pi)^{-p} \int \delta( k_\mu k^\mu + m^2 ) \Theta( k_0 ) e^{ - i k_\mu (x-y)^\mu } d^{p+1} k \,, \end{aligned} \label{2PointFunctionFreeScalarFieldOnMinkowski}\end{equation} where in the last line we again applied [[change of integration variables]]. This $\omega$ is known as the \emph{[[2-point function]]} or \emph{[[Hadamard propagator]]} on Minkowski spacetime (see def. \ref{2PointFunctionOfScalarFieldOnMinkowskiSpacetime} below). Similarly \begin{displaymath} \begin{aligned} \{ \phi^{(+)}(x), \phi^{(-)}(y) \} & = + i (2\pi)^{-p} \int \tfrac{1}{2 E(\vec k)} e^{i E(\vec k) (x-y)^0 + \vec k \cdot (\vec x - \vec y)} d^{p} \vec k \\ & = + i (2\pi)^{-p} \int \delta( k_\mu k^\mu + m^2 ) \Theta( -k_0 ) e^{ - i k_\mu (x-y)^\mu } d^{p+1} k \\ \end{aligned} \,. \end{displaymath} In particular this says that \begin{displaymath} \{ \phi^{(+)}(x), \phi^{(-)}(y) \} = - \omega(y,x) \coloneqq - \{ \phi^{(-)}(y), \phi^{(+)}(x) \} \,. \end{displaymath} With this we finally obtain the expression for the [[causal propagator]] as the skew-symmetrization of the [[2-point function]]: \begin{displaymath} \begin{aligned} \{ \phi(x), \phi(y) \} & = \{ \phi^{(-)}(x), \phi^{(+)}(y) \} + \{\phi^{(+)}(x), \phi^{(-)}(y)\} \\ & = \omega(x,y) - \omega(y,x) \\ & = -i (2\pi)^{-p} \int \tfrac{1}{2 E(\vec k)}\left( e^{- i E(\vec k) (x-y)^0 - \vec k \cdot (\vec x - \vec y)} - e^{+ i E(\vec k) (x-y)^0 + \vec k \cdot (\vec x - \vec y)} \right) d^p \vec k \\ & = -i (2\pi)^{-p} \int \delta( k_\mu k^\mu + m^2 ) sgn( k_0 ) e^{ - i k_\mu (x-y)^\mu } d^{p+1} k \,. \end{aligned} \end{displaymath} \end{proof} We record the 2-point function that appeared in this computation: \begin{defn} \label{2PointFunctionOfScalarFieldOnMinkowskiSpacetime}\hypertarget{2PointFunctionOfScalarFieldOnMinkowskiSpacetime}{} \textbf{([[2-point function]] of [[scalar field]] on [[Minkowski spacetime]])} The \emph{[[2-point function]]} or \emph{[[Hadamard propagator]]} of the scalar field on [[Minkowski spacetime]] \begin{displaymath} \omega \;\in\; \mathcal{D}'(\Sigma \times \Sigma) \end{displaymath} is \eqref{2PointFunctionFreeScalarFieldOnMinkowski} \begin{displaymath} \omega(x,y) \;\coloneqq\; i \{\phi^{(-)}(x), \phi^{(+)}(y)\} \,. \end{displaymath} \end{defn} \hypertarget{on_general_spacetimes}{}\paragraph*{{On general spacetimes}}\label{on_general_spacetimes} We discuss the [[covariant phase space]] of the [[free field|free]] scalar field on general [[spacetimes]]. \begin{defn} \label{LocalLagrangianOfFreeScalarField}\hypertarget{LocalLagrangianOfFreeScalarField}{} \textbf{([[local Lagrangian density]] for [[free field|free]] [[scalar field]] on general [[spacetime]])} As a [[classical field theory|classical]] [[local field theory|local field]] the \emph{relativistic [[free field|free]] scalar field} in [[dimension]] $p+1 \in \mathbb{N}$ of [[mass]] $m \in [0,\infty)$ is \begin{itemize}% \item for each [[globally hyperbolic spacetime|globally hyperbolic]] [[orientation|oriented]] and [[time orientation|time-oriented]] [[spacetime]] $(\Sigma,e)$ ($\Sigma$ a [[smooth manifold]], $e$ a [[pseudo-orthogonal structure]]/[[vielbein]] inducing a [[pseudo-Riemannian metric]] $g$) \end{itemize} \begin{enumerate}% \item the [[field bundle]] given by the [[trivial line bundle]] $X \times k \overset{pr_1}{\to} X$ over $X$; \item the [[local Lagrangian density]] $L \in \Omega^{p+1,0}(J^\infty_X(X \times k))$ (a [[horizontal differential form]] on the [[jet bundle]] of the [[trivial line bundle]] over $X$) given by \begin{displaymath} L \;\coloneqq\; \left( \vert \nabla \phi\vert^2 + m^2 \phi^2\right) dvol_ \Sigma \end{displaymath} where \begin{enumerate}% \item $\vert \nabla \phi\vert^2$ denotes the [[norm]] square of the first order jets with respect to the given [[metric]] $g$, hence in a local [[coordinate chart]] $J^\infty(E\vert_U) \coloneqq \left\{ \{x^\mu\}, \phi, \{\phi_{,\mu} \cdots\} \right\}$ of $J^\infty(X \times k)$ the function \begin{displaymath} \vert \nabla \phi\vert^2\vert_{J^{\infty}(E\vert_U)} \;=\; g^{\mu \nu} \phi_{,\mu} \phi_{,\nu} \end{displaymath} \item $dvol$ denotes the [[volume form]] of $(\Sigma,e)$, canonically regarded as a [[horizontal differential form]] on $J^\infty(\Sigma \times k)$. \end{enumerate} \end{enumerate} \end{defn} The analogue of prop. \ref{IntegralKernelForPoissonBracketOfFreeScalarFieldOnMinkowskiSpacetime} holds true for general spacetimes: \begin{prop} \label{FreeScalarFieldGreenFunctions}\hypertarget{FreeScalarFieldGreenFunctions}{} \textbf{([[advanced propagator]] and [[retarded propagator]])} On a [[time orientation|time oriented]] [[globally hyperbolic spacetime]] the [[Klein-Gordon operator]] admits unique [[advanced propagator]] and [[retarded propagator]]. \end{prop} (e.g. \href{BaerGinouxPfaeffle07}{B\"a{}r-Ginoux-Pf\"a{}ffle 07, corollary 3.4.3}) \begin{prop} \label{}\hypertarget{}{} The induced [[Poisson bracket]] on the [[covariant phase space]] of the free scalar field (def. \ref{LocalLagrangianOfFreeScalarField}) is given by the [[Peierls bracket]]. (\ldots{}) \end{prop} By \href{Peierls+bracket#PeierlsPoissonBracket}{this prop.} (e.g. \href{Peierls+bracket#Khavkine14}{Khavkine 14}, \hyperlink{Collini16}{Collini 16, lemma 21}). See also \href{locally+covariant+perturbative+quantum+field+theory#FredenhagenRejzner15}{Fredenhagen-Rejzner 15, 3.3 Example} \hypertarget{interacting_scalar_field}{}\subsubsection*{{Interacting scalar field}}\label{interacting_scalar_field} We discuss [[perturbative quantum field theory]] of the free scalar field perturbed by an [[interaction]] term via [[locally covariant perturbative algebraic quantum field theory]]. \hypertarget{on_minkowski_spacetime_2}{}\paragraph*{{On Minkowski spacetime}}\label{on_minkowski_spacetime_2} We disscuss the interacting scalar field on [[Minkowski spacetime]] via [[causal perturbation theory]]. By the discussion at \emph{[[S-matrix]]} we need to determine the [[Feynman propagator]], which is a linear combination of the [[2-point function]] with the [[advanced propagator]]: \begin{defn} \label{}\hypertarget{}{} [[advanced propagator]] \begin{displaymath} \Delta_A(x.y) \coloneqq \theta((x-y)^0) \Delta(x,y) \end{displaymath} [[retarded propagator]] \begin{displaymath} \Delta_R(x.y) \coloneqq \theta((y-x)^0) \Delta(x,y) \end{displaymath} \end{defn} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[wave equation]], [[Klein-Gordon equation]] \item [[causal propagator]], [[Feynman propagator]] \item [[Wick algebra]] \end{itemize} $\backslash$linebreak \hypertarget{references}{}\subsection*{{References}}\label{references} For instance \begin{itemize}% \item [[Günter Scharf]], section 1.1 of \emph{[[Quantum Gauge Theories -- A True Ghost Story]], Wiley 2001} \end{itemize} Most of the literatur on [[causal perturbation theory]] and [[perturbative AQFT]] focuses on the scalar field, for ease of exposition. See the references there. The standard [[perturbative quantum field theory]] (made rigorous via [[causal perturbation theory]]) of the [[interaction|interacting]] scalar field is shown to be [[Fedosov deformation quantization]] of the corresponding [[covariant phase space]] in \begin{itemize}% \item [[Giovanni Collini]], section 2.2 of \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \end{itemize} For references on the construction of [[perturbative quantum field theory|perturbative]] scalar field theory in [[causal perturbation theory]] see at \emph{[[locally covariant perturbative quantum field theory]]}. Discussion of scalar fields in [[cosmology]] includes \begin{itemize}% \item J.W. van Holten, \emph{On single scalar field cosmology} (\href{http://arxiv.org/abs/1301.1174}{arXiv:1301.1174}) \end{itemize} Examples in [[AQFT]] of [[non-perturbative quantum field theory|non-perturbative]] [[interacting quantum field theory|interacting]] [[scalar field theory]] in \emph{any} [[spacetime]] [[dimension]] (in particular in $d \geq 4$) are claimed in \begin{itemize}% \item [[Detlev Buchholz]], [[Klaus Fredenhagen]], \emph{A $C*$-algebraic approach to interacting quantum field theories} (\href{https://arxiv.org/abs/1902.06062}{arXiv:1902.06062}) \end{itemize} [[!redirects scalar field]] [[!redirects scalar fields]] [[!redirects real scalar field]] [[!redirects reak scalar fields]] [[!redirects complex scalar field]] [[!redirects complex scalar fields]] [[!redirects scalar field theory]] [[!redirects scalar field theories]] [[!redirects scalar particle]] [[!redirects scalar particles]] \end{document}