\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{scattering amplitude} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_chernsimons_theory}{In Chern-Simons theory}\dotfill \pageref*{in_chernsimons_theory} \linebreak \noindent\hyperlink{of_monopoles}{Of monopoles}\dotfill \pageref*{of_monopoles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{analytic_methods}{Analytic methods}\dotfill \pageref*{analytic_methods} \linebreak \noindent\hyperlink{in_super_yangmills_theory}{In super Yang-Mills theory}\dotfill \pageref*{in_super_yangmills_theory} \linebreak \noindent\hyperlink{in_string_theory_and_higher_supergravity}{In string theory and higher supergravity}\dotfill \pageref*{in_string_theory_and_higher_supergravity} \linebreak \noindent\hyperlink{motivic_structure}{Motivic structure}\dotfill \pageref*{motivic_structure} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[quantum field theory]] scattering amplitudes are the [[probability amplitudes]] for processes of [[scattering]] of [[fundamental particles]] (or [[fundamental strings]] etc.) off each other. The collection of scattering amplitudes forms the \emph{[[S-matrix]]}. In [[perturbative quantum field theory]] its contributions may be labeled by [[Feynman diagrams]], whence it is also called the \emph{[[Feynman perturbation series]]}. Of particular interest are [[vacuum amplitudes]] which are scattering amplitudes ``where nothing external scatters'' hence for no incoming and no outgoing states. The [[1-loop]] vacuum amplitudes are [[regularization (physics)|regularized]] [[traces]] over [[Feynman propagators]]. These are the incarnations of [[zeta functions]], [[L-functions]] and [[eta functions]] in [[physics]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_chernsimons_theory}{}\subsubsection*{{In Chern-Simons theory}}\label{in_chernsimons_theory} The Feynman amplitudes of [[higher Chern-Simons theory]], such as [[AKSZ sigma-models]], regarded in their incarnation as [[Feynman amplitudes on compactified configuration spaces of points]], serve to exhibit a [[graph complex]]-model for the [[de Rham complex]] of [[Fulton-MacPherson compactifications]] of [[configuration spaces of points]] by the construction recalled \href{Fulton-MacPherson+operad#RelationToGraphComplexes}{there}. See the pointers at \emph{[[Chern-Simons theory]]} \href{Chern-Simons+theory#FeynmanPerturbationSeries}{here}. \hypertarget{of_monopoles}{}\subsubsection*{{Of monopoles}}\label{of_monopoles} See at \emph{[[moduli space of monopoles]]} the section \emph{\href{moduli+space+of+monopoles#ScatteringAmplitudesofMonopoles}{Scattering amplitudes of monopoles}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[scattering]] \item [[scattering matrix]] \item [[scattering cross section]] \item [[perturbative quantum field theory]] \item [[n-point function]], [[correlator]] \item [[Feynman diagram]] \item [[abstract scattering theory]] \item [[cluster decomposition]] \item [[renormalization]] \item [[on-shell recursion]], [[planar limit]] \item [[form factor (QFT)]] \item [[KLT relations]] \item [[amplituhedron]] \item [[string theory results applied elsewhere]] \item [[string scattering amplitude]] \item [[motives in physics]] \item [[graph complex]], [[formality of the little n-disk operad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item Henriette Elvang, Yu-tin Huang, \emph{Scattering Amplitudes} (\href{http://arxiv.org/abs/1308.1697}{arXiv:1308.1697}) \end{itemize} intended to \begin{quote}% bridge the gap between a standard course in quantum field theory and recent fascinating developments in the studies of on-shell scattering amplitudes. \end{quote} \begin{itemize}% \item Tomasz R. Taylor, \emph{A Course in Amplitudes} (\href{https://arxiv.org/abs/1703.05670}{arXiv:1703.05670}) \item Stephen J. Summers, [[Detlev Buchholz]], \emph{Scattering in Relativistic Quantum Field Theory: Fundamental Concepts and Tools} (\href{https://arxiv.org/abs/math-ph/0509047}{arXiv:math-ph/0509047}) \item Clifford Cheung, \emph{TASI Lectures on Scattering Amplitudes} (\href{https://arxiv.org/abs/1708.03872}{arXiv:1708.03872}) \end{itemize} A historical overview of the development of on-shell methods/analytic methods is in \begin{itemize}% \item [[Lance Dixon]], \emph{Calculating Amplitudes}, December 2013 (\href{http://www.preposterousuniverse.com/blog/2013/10/03/guest-post-lance-dixon-on-calculating-amplitudes/}{web}) \end{itemize} Annual conference series: \begin{itemize}% \item \emph{\href{https://indico.cern.ch/event/750565/timetable/#20190701.detailed}{Amplitudes 2019}} \end{itemize} \hypertarget{analytic_methods}{}\subsubsection*{{Analytic methods}}\label{analytic_methods} \begin{itemize}% \item Ruth Britto, \emph{Loop amplitudes in gauge theories: modern analytic approaches} (\href{http://arxiv.org/abs/1012.4493}{arXiv:1012.4493}) \item [[Zvi Bern]], [[Lance Dixon]], [[David Kosower]], \emph{On-Shell Methods in Perturbative QCD} (\href{http://arxiv.org/abs/0704.2798}{arXiv:0704.2798}) \item [[Joseph Polchinski]], [[Matthew Strassler]], \emph{Hard Scattering and Gauge/String Duality}, Phys.Rev.Lett.88:031601,2002, (\href{http://lanl.arxiv.org/abs/hep-th/0109174}{arXiv:hep-th/0109174}) \end{itemize} See also at \emph{[[string theory results applied elsewhere]]} and at \emph{[[motivic multiple zeta values]]}. \hypertarget{in_super_yangmills_theory}{}\subsubsection*{{In super Yang-Mills theory}}\label{in_super_yangmills_theory} In [[super Yang-Mills theory]] (and there in particular in the [[planar limit]] of [[N=4 D=4 super Yang-Mills theory]]) scattering amplitudes enjoy special symmetry properties, some of which can be used to extract information about scattering amplitudes in non-supersymmetric theories (see also at \emph{[[amplituhedron]]}): \begin{itemize}% \item [[Nima Arkani-Hamed]], Jacob L. Bourjaily, Freddy Cachazo, Alexander B. Goncharov, [[Alexander Postnikov]], Jaroslav Trnka, \emph{Scattering Amplitudes and the Positive Grassmannian} (\href{http://arxiv.org/abs/1212.5605}{arXiv:1212.5605}) \item [[Nima Arkani-Hamed]], Jaroslav Trnka, \emph{The Amplituhedron}, \href{http://arxiv.org/abs/1312.2007}{arxiv/1312.2007} \end{itemize} \hypertarget{in_string_theory_and_higher_supergravity}{}\subsubsection*{{In string theory and higher supergravity}}\label{in_string_theory_and_higher_supergravity} \begin{itemize}% \item Wieland Staessens, Bert Vercnocke, \emph{Lectures on Scattering Amplitudes in String Theory} (\href{http://arxiv.org/abs/1011.0456}{arXiv:1011.0456}) \item [[Michael Green]], \emph{Properties of low energy graviton scattering amplitudes}, June 2010 (\href{http://string.lpthe.jussieu.fr/cargese/2010/talks/green_cargese2010.pdf}{pdf}) \end{itemize} For more see at \emph{[[string scattering amplitude]]}. \hypertarget{motivic_structure}{}\subsubsection*{{Motivic structure}}\label{motivic_structure} Motivic structures in scattering amplitudes (see at \emph{[[motives in physics]]}) are discussed for instance in \begin{itemize}% \item John Golden, Alexander B. Goncharov, Marcus Spradlin, Cristian Vergu, Anastasia Volovich, \emph{Motivic Amplitudes and Cluster Coordinates} (\href{http://arxiv.org/abs/1305.1617}{arXiv:1305.1617}) \end{itemize} See also the references at \emph{[[period]]}. [[!redirects scattering amplitudes]] [[!redirects Feynman amplitude]] [[!redirects Feynman amplitudes]] \end{document}