\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{schedule} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{schedules}{}\section*{{Schedules}}\label{schedules} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{schedules}{Schedules}\dotfill \pageref*{schedules} \linebreak \noindent\hyperlink{paths}{Paths}\dotfill \pageref*{paths} \linebreak \noindent\hyperlink{secschthm}{Schedule Theorem}\dotfill \pageref*{secschthm} \linebreak \noindent\hyperlink{secglobal}{Globalisation Theorem}\dotfill \pageref*{secglobal} \linebreak \noindent\hyperlink{secproof}{Proof of the Schedule Theorem}\dotfill \pageref*{secproof} \linebreak \noindent\hyperlink{refs}{References}\dotfill \pageref*{refs} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $X$ be a [[topological space]] and $\mathcal{U}$ an [[open cover]] thereof. A ([[continuous function|continuous]]) path $\gamma \colon I \to X$ can pass through many of the elements of $\mathcal{U}$ as it winds its way around $X$. We can decompose that path into segments such that each segment lies wholly inside one of the [[open sets]] in $\mathcal{U}$. The \textbf{Schedule Theorem} says that this can be done continuously over all paths in $X$. This was proved by \hyperlink{DyerEilenberg}{Dyer and Eilenberg} and applied to the question of fibrations over numerable spaces. \hypertarget{schedules}{}\subsection*{{Schedules}}\label{schedules} The idea of a schedule is that it is a way of decomposing a length into pieces and then assigning a label to each piece. This clearly fits with the stated purpose of these things since we wish to decompose a path into pieces and assign an open set to each piece. To make this precise, we start with a set of labels. Following Dyer and Eilenberg, let us write this as $A$. Lengths are positive [[real numbers]] and so we also need the set of such, Dyer and Eilenberg denote this by $T$; thus $T \coloneqq \mathbb{R}_{\ge 0}$. \begin{defn} \label{schmon}\hypertarget{schmon}{} The \textbf{schedule monoid} of $A$ is the [[free monoid]] on the [[set]] $A \times T$. It is written $S A$. Its elements are \textbf{schedules} in $A$. \end{defn} A schedule in $A$ is thus a finite [[order|ordered]] list of pairs $(a,t)$ where $a \in A$ and $t \in T$. There are two notions of \emph{length} for a schedule. There is the \emph{word length} which simply counts the number of pairs. Then there is the function $l \colon S A \to T$ defined by $l((a_1,t_1) \cdots (a_k,t_k)) = t_1 + \cdots + t_k$. There is also a right action of $T$ on $S A$ which simply multiplies all of the lengths: $((a_1,t_1) \cdots (a_k,t_k)) \cdot t = ((a_1,t_1 t) \cdots (a_k,t_k t))$. Then $l(s t) = l(s) t$. \begin{defn} \label{reduced}\hypertarget{reduced}{} A schedule is said to be \textbf{reduced} if all of its terms, $(a,t)$, have non-zero length, i.e. $t \gt 0$. The set of reduced schedules forms a submonoid of $S A$ which is written $R S A$. \end{defn} The empty schedule is reduced. There is a [[retraction]] map $\rho \colon S A \to R S A$ defined by removing all terms with zero length part. The schedule monoid is given a [[topology]] so that the labels are discrete and the lengths topologised as usual. More concretely, given a word $a_1 a_2 \dots a_k$ of elements in $A$, the set of schedules of the form $(a_1,t_1) (a_2,t_2) \cdots (a_k,t_k)$ is in bijection with $T^k$ and we make that bijection a homeomorphism. Then $S A$ is topologised by taking the coproduct over the set of words in $A$. The reduced schedule monoid is topologised as the quotient of this. \hypertarget{paths}{}\subsection*{{Paths}}\label{paths} Let $X$ be a [[topological space]]. Let $P X$ denotes its [[Moore path space]]. Suppose that we have a family $\mathcal{U}$ of subsets of $X$ indexed by some set $A$. Then we consider a schedule in $A$ as giving an ordered list of these subsets together with the times to be spent in each. For a path in $X$, and a schedule of the appropriate length, then we can ask whether or not the path \emph{fits} (or obeys) the schedule. We make that precise as follows. \begin{defn} \label{fits}\hypertarget{fits}{} Suppose that we have $\alpha \in P X$ and $s \in S A$, and suppose that $s = (a_1, t_1) \cdots (a_k,t_k)$. Then we say that $\alpha$ \textbf{fits the schedule} s, written $\alpha \Vert s$, if the following conditions hold: \begin{enumerate}% \item $l(\alpha) = l(s)$ \item We can split $\alpha$ into subpaths according to the times $\{t_i\}$. Let $\alpha_i$ be the $i$th segment. Then $\alpha_i \in P U_{a_i}$. \end{enumerate} \end{defn} Here, $l \colon P X \to T$ is the function that assigns to a Moore path its length. The schedule designates a decomposition of $[0,l]$ into subintervals with $t_i$ being the length of the $i$th subinterval. Then saying that $\alpha$ fits the schedule $s$ means that $\alpha$ spends the $i$th subinterval in the open set $U_{a_i}$. \hypertarget{secschthm}{}\subsection*{{Schedule Theorem}}\label{secschthm} We can now state the main theorem. \begin{theorem} \label{schthm}\hypertarget{schthm}{} Let $X$ be a [[topological space]]. Let $\mathcal{U}$ be a [[locally finite cover|locally finite]] [[open covering]] of $X$ by [[numerable]] open sets with indexing set $A$. Then there is a covering $\mathcal{F}$ of $P X$ by [[closed sets]] and a family of [[continuous functions]] $f \colon F \to S A$, indexed by $F \in \mathcal{F}$ such that: \begin{enumerate}% \item for each $\alpha \in P X$, there some finite subfamily $\{F_1, \dots, F_k\} \subseteq \mathcal{F}$ such that $\alpha$ is in the interior of $\bigcup F_j$, \item for each $\alpha \in F$, $\alpha \Vert f_F(\alpha)$, and \item for each $\alpha \in F \cap F'$, $\rho(f_F(\alpha)) = \rho(f_{F'}(\alpha))$ \end{enumerate} \end{theorem} The first condition is purely about the covering. Dyer and Eilenberg use the term \emph{local covering} for a covering by closed sets with this property. \begin{corollary} \label{schcor}\hypertarget{schcor}{} There exists a [[continuous function]] $h \colon P X \to R S A$ such that $\alpha \Vert h(\alpha)$ if $l(\alpha) \gt 0$ and $h(\alpha) = \Lambda$ if $l(\alpha) = 0$. \end{corollary} Here, $\Lambda \in R S A$ is the empty word. \hypertarget{secglobal}{}\subsection*{{Globalisation Theorem}}\label{secglobal} The original motivation for the notion of \emph{schedules} was to prove the \emph{globalisation theorem} for (Hurewicz) [[Hurewicz fibration|fibrations]]. \begin{theorem} \label{global}\hypertarget{global}{} Let $p \colon Y \to B$ be a continuous function. Suppose that $\mathcal{U}$ is a locally finite covering of $B$ by numerable open sets with the property that for each $U \in \mathcal{U}$ then the restriction $p_U \colon Y_U \to U$ is a fibration. Then $p$ is a fibration. \end{theorem} The link between the globalisation theorem and the schedule theorem is the characterisation of Hurewicz fibrations in terms of [[Hurewicz connections]]. \hypertarget{secproof}{}\subsection*{{Proof of the Schedule Theorem}}\label{secproof} Let $X$ be a topological space. Let $\mathcal{U}$ be a locally finite open covering of $X$ by numerable open sets and indexing set $A$. Let us write $A^*$ for the free monoid on $A$. Then there is a function $A^* \times T \to S A$ which takes $(a_1 a_2 \cdots a_k, t)$ to the schedule $(a_1,t/k)(a_2,t/k)\cdots (a_k,t/k)$. We say that a path $\alpha \in P X$ \emph{evenly fits} $s \in A^*$, and write this as $\alpha \Vert_e s$, if it fits the schedule corresponding to $(s,l(\alpha))$. We need an initial technical result. \begin{lemma} \label{even}\hypertarget{even}{} There is a locally finite covering $\mathcal{W} = \{W_s \mid s \in A^*\}$ of $P X$ by numerable open sets such that for $\alpha \in W_s$ then $\alpha$ evenly fits the word $s$. \end{lemma} \begin{uremark} Let us explain why this is a reasonable result. Consider a path, $\alpha$, of length $l$. We pull back the cover $\mathcal{U}$ to a cover of $[0,l]$. Using compactness of $[0,l]$ we can replace the pull-back cover by a finite family of open subintervals of $[0,l]$ which cover $[0,l]$. Each subinterval is labelled by an element of $\mathcal{U}$ (though a label might be reused). As the family is finite, the intersections are finite and therefore have a minimum length. Choose $n$ big enough so that $l/n$ is less than this minimum length. Then consider the subdivision of $[0,l]$ given by $\{0,1/n,\dots,l/n\}$. Our conditions on $n$ guarantee that every intersection of subintervals contains at least one of these division points. We can therefore assign to each subinterval of the form $[k/n, (k+1)/n]$ one of the original family of subintervals that contains it. Then we can assign the corresponding element of $\mathcal{U}$. Thus $\alpha$ fits evenly the corresponding word. Thus the sets $Y_s \coloneqq \{\alpha : \alpha \|_e s\}$ cover $P X$. That they are open follows from the fact that the condition for membership depends on certain compact sets lying in certain open sets and we use the [[compact-open topology]] on $P X$. What is more complicated is reducing the family to a locally finite one. \end{uremark} As $\mathcal{W}$ is locally finite and its elements are numerable, we can choose a numeration that is also a partition of unity. That is, we can choose continuous functions $q_s \colon X \to [0,1]$ with the property that $q_s^{-1}((0,1]) = W_s$ and $\sum_s q_s = 1$. Let $\mathcal{B}$ be the set of finite subsets of $A^* \setminus \Lambda$ (where $\Lambda$ is the empty word). For $b \in \mathcal{B}$ we define \begin{displaymath} \begin{aligned} D_b &\coloneqq \{\alpha \in P X \mid \sum_{s \in b} q_s(\alpha) = 1 \} \\ &=\{ \alpha \in P X \mid q_s(\alpha) = 0 \; \text{for all}\; s \notin b\} \end{aligned} \end{displaymath} This is a covering of $P X$ by closed sets. As $\mathcal{W}$ is locally finite, for $\alpha \in P X$ there is some neighbourhood $V$ which meets only a finite number of the $\mathcal{W}$. These are indexed by elements of $A^*$, indeed of $A^* \setminus \Lambda$, and so the set of indices is an element, say $b$, of$\mathcal{B}$. Then for $s \notin b$, $q_s \mid V = 0$ and so for $\beta \in V$, $\sum_{s \in b} q_s(\beta) = 1$, whence $V \subseteq D_b$. Thus each $\alpha$ is contained in the interior of some $D_b$. Now let us put a [[total ordering]] on $A^*$. This induces a total ordering on each $b \in \mathcal{B}$ and thus allows us to define the partial sums of the summation $\sum_{s \in b} q_s$. Write these as $Q_i$, with $Q_0$ as the zero function. Fix $b \in \mathcal{B}$ and write it as $b = \{s_1,s_2,\dots,s_k\}$ in the inherited ordering. Let $e = (l_1,r_1,\dots,l_k,r_k)$ be a list of integers with the property that $1 \le l_i \le r_i \le \#s_i$ where $\#s_i$ is the word length of $s_i$. Define: \begin{displaymath} D_{(b,e)} = \left\{ \alpha \in D_b \mid \frac{l_i -1}{\# s_i} \le Q_{i - 1}(\alpha) \le \frac{l_i}{\# s_i} \; \text{and} \; \frac{r_i - 1}{\# s_i} \le Q_i(\alpha) \le \frac{r_i}{\# s_i} \right\}. \end{displaymath} This is closed in $D_b$ and the collection $\{D_{(b,e)}\}$ is a finite cover of $D_b$. The family $\{D_{(b,e)}\}$ ranging over all $b \in \mathcal{B}$ and suitable $e$ is the family $\mathcal{F}$ that we are looking for. It has the required covering property since the interiors of the $D_b$ cover $P X$. Define $f_{(b,e)} \colon D_{(b,e)} \to S A$ as follows: \begin{displaymath} f_{(b,e)}(\alpha) = \sigma_1 \cdots \sigma_k l(\alpha) \end{displaymath} where $\sigma_i$ is the schedule with $\# \sigma_i = r_i - l_i + 1$ and $l(\sigma_i) = q_{s_i}(\alpha)$, and if $s_i = a_1 \cdots a_n$ then if $l_i \lt r_i$ we have \begin{displaymath} \sigma_i = \left( a_{l_1}, \frac{l_i}{n} - Q_{i - 1}(\alpha)\right) \left(a_{l_i+1}, \frac{1}{n} \right) \cdots \left(a_{r_i - 1}, \frac{1}{n} \right) \left( a_{r_i}, Q_i(\alpha) - \frac{r_i - 1}{n} \right) \end{displaymath} otherwise, $\sigma_i = (a_{l_i}, Q_i(\alpha) - Q_{i-1}(\alpha))$. This is continuous and for $\alpha \in D_{(b,e)}$ then $\alpha$ fits $f_{(b,e)}(\alpha)$. Moreover, for $\alpha \in D_{(b,e)} \cap D_{(b',e')}$ then $\rho f_{(b,e)}(\alpha) = \rho f_{(b',e')}(\alpha)$. \hypertarget{refs}{}\subsection*{{References}}\label{refs} \begin{itemize}% \item Dyer, E. and E., Samuel. (1988). Globalizing fibrations by schedules. \emph{Fund. Math.}, \emph{130}, 125--136. \href{http://www.ams.org/mathscinet-getitem?mr=963792}{MR0963792} \item Dyer, Eilenberg, MR0963792 \end{itemize} [[!redirects schedules]] [[!redirects schedule theorem]] \end{document}