\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{second lctvs diagram dot source} /* [[!redirects lctvs lattice dot source]] This is the graphviz source for an alternative version of the diagram at [[TVS relationships]]. The original intention was to see if it is possible to make this into a lattice. However, that would have made the diagram too unwieldy. Instead, the attempt is simply to expand and improve on the original diagram. The current SVG can be seen at [[diagram of LCTVS properties]]. To recreate the SVG, the \textbf{whole} source of this page (or just the code below) should be run through {\colorbox[rgb]{1.00,0.93,1.00}{\tt dot}} (note that this part of the page is actually a comment in the dot source so doesn't get seen). For example, assuming that the source has been saved as {\colorbox[rgb]{1.00,0.93,1.00}{\tt lctvs\char46dot}}, run: \begin{verbatim}dot -Tsvg -o lctvs.svg lctvs.dot\end{verbatim} \begin{verbatim}*/ digraph LCTVS { splines=true; overlap=orthoyx; // style for properties relating to size subgraph size { style=none; node [shape=box, style=filled, fillcolor="#ffffbb"]; FD [tooltip="Finite-Dimensional", href="http://ncatlab.org/nlab/show/Finite-Dimensional topological vector space"]; Hi [tooltip="Hilbert (technically, admits a Hilbertian structure)", href="http://ncatlab.org/nlab/show/Hilbert space"]; Nu [tooltip="Nuclear", href="http://ncatlab.org/nlab/show/Nuclear space"]; Ba [tooltip="Banach (technically, complete and normable)", href="http://ncatlab.org/nlab/show/Banach space"]; IP [tooltip="Topology from an inner-product", href="http://ncatlab.org/nlab/show/inner-product space"]; Mo [tooltip="Montel", href="http://ncatlab.org/nlab/show/Montel space"]; Sc [tooltip="Schwartz", href="http://ncatlab.org/nlab/show/Schwartz space"]; UB [tooltip="Ultrabornological", href="http://ncatlab.org/nlab/show/ultrabornological topological vector space"]; Fr [tooltip="Fréchet", href="http://ncatlab.org/nlab/show/Fréchet space"]; DF [tooltip="DF", href="http://ncatlab.org/nlab/show/DF topological vector space"]; No [tooltip="Normable space", href="http://ncatlab.org/nlab/show/normed vector space"]; Bo [tooltip="Bornological", href="http://ncatlab.org/nlab/show/bornological topological vector space"]; LF [tooltip="strict inductive sequence of Fréchet spaces", href="http://ncatlab.org/nlab/show/LF space"]; LB [tooltip="strict inductive sequence of Banach spaces", href="http://ncatlab.org/nlab/show/LB space"]; Me [tooltip="Metrisable", href="http://ncatlab.org/nlab/show/metrisable topological vector space"]; // no label node [shape=circle, width=.2]; NuFr [label="", tooltip="Nuclear Fréchet space", href="http://ncatlab.org/nlab/show/nuclear topological vector space"]; } // style for properties relating to completeness subgraph complete { node [shape=box, style=filled, fillcolor="#bbffff"]; LC [tooltip="Locally Complete", href="http://ncatlab.org/nlab/show/locally complete topological vector space"]; QC [tooltip="Quasi-Complete", href="http://ncatlab.org/nlab/show/quasi-complete topological vector space"]; Pt [tooltip="Ptak Space", href="http://ncatlab.org/nlab/show/Ptak space"]; BC [tooltip="Br Space", href="http://ncatlab.org/nlab/show/Ptak space"]; Sq [tooltip="Sequentially Complete", href="http://ncatlab.org/nlab/show/sequentially complete topological vector space"]; Cp [tooltip="Complete", href="http://ncatlab.org/nlab/show/complete topological vector space"]; } // style for properties relating to duality subgraph dual { node [shape=box, style=filled, fillcolor="#ffbbff"]; Re [tooltip="Reflexive", href="http://ncatlab.org/nlab/show/reflexive topological vector space"]; SR [tooltip="Semi-Reflexive", href="http://ncatlab.org/nlab/show/semi-reflexive topological vector space"]; QB [tooltip="Quasi-Barrelled", href="http://ncatlab.org/nlab/show/quasi-barrelled topological vector space"]; Mk [tooltip="Mackey", href="http://ncatlab.org/nlab/show/Mackey topological vector space"]; Bl [tooltip="Barrelled", href="http://ncatlab.org/nlab/show/barrelled topological vector space"]; // no label node [shape=circle, width=.2]; MkSR [label="", tooltip="Mackey and Semi-Reflexive", href="http://ncatlab.org/nlab/show/Mackey topological vector space"]; } // Style for nodes with no label node [shape=circle, width=.2, style=filled, fillcolor="#ffffbb"]; QCQB [label="", tooltip="Quasi-Complete and Quasi-Barrelled", href="http://ncatlab.org/nlab/show/barreled topological vector space"]; ReBa [label="", tooltip="Reflexive Banach space", href="http://ncatlab.org/nlab/show/reflexive topological vector space"]; ReFr [label="", tooltip="Reflexive Fréchet space", href="http://ncatlab.org/nlab/show/reflexive topological vector space"]; FD -> Hi; Hi -> IP; IP -> No; No -> Me; Hi -> ReBa; ReBa -> Ba; Ba -> LB; Ba -> Fr; Fr -> Me; Fr -> LF; LB -> LF; Ba -> No; FD -> NuFr; Nu -> Sc; NuFr -> Nu; NuFr -> ReFr; NuFr -> Mo; No -> DF; LB -> DF; UB -> Bo; Bo -> QB; Bl -> QB; QB -> Mk; Re -> Bl; Re -> MkSR; QCQB -> Bl; MkSR -> Mk; MkSR -> SR; Pt -> BC; BC -> Cp; Cp -> QC; QC -> Sq; Sq -> LC; QCQB -> QC; ReBa -> ReFr; ReFr -> Re; ReFr -> Fr; SR -> QC; Fr -> Pt; Mo -> Re; Me -> Bo; LF -> UB; UB -> QCQB; /* All the rest generates the key */ subgraph keys { rank=same; yFD [label="",width=0,style=invis]; yDF [shape=box, style=solid, label="Key to symbols"]; yPt [label="",width=0,style=invis]; } subgraph cluster_key_col1 { color=white; node [label="",width=0,style=invis]; yHi; yNu; yBa; yIP; yMo; ySc; yUB; yFr; yZ1; } subgraph key1 { node [shape=box, style=filled, fillcolor="#ffffbb"]; xFD [label="FD: Finite-Dimensional", href="http://ncatlab.org/nlab/show/Finite-Dimensional topological vector space"]; xHi [label="Hi: Hilbert (technically, admits a Hilbertian structure)", href="http://ncatlab.org/nlab/show/Hilbert space"]; xNu [label="Nu: Nuclear", href="http://ncatlab.org/nlab/show/Nuclear space"]; xBa [label="Ba: Banach (technically, complete and normable)", href="http://ncatlab.org/nlab/show/Banach space"]; xIP [label="IP: Topology from an inner-product", href="http://ncatlab.org/nlab/show/inner-product space"]; xMo [label="Mo: Montel", href="http://ncatlab.org/nlab/show/Montel space"]; xSc [label="Sc: Schwartz", href="http://ncatlab.org/nlab/show/Schwartz space"]; xUB [label="UB: Ultrabornological", href="http://ncatlab.org/nlab/show/ultrabornological topological vector space"]; xFr [label="Fr: Fréchet", href="http://ncatlab.org/nlab/show/Fréchet space"]; } subgraph cluster_key_col2 { color=white; node [label="",width=0,style=invis]; yNo; yBo; yLF; yLB; yMe; yLC; yQC; yZ2; } subgraph key2 { node [shape=box, style=filled, fillcolor="#ffffbb"]; xDF [label="DF: DF", href="http://ncatlab.org/nlab/show/DF topological vector space"]; xNo [label="No: Normable space", href="http://ncatlab.org/nlab/show/normed vector space"]; xBo [label="Bo: Bornological", href="http://ncatlab.org/nlab/show/bornological topological vector space"]; xLF [label="LF: strict inductive sequence of Fréchet spaces", href="http://ncatlab.org/nlab/show/LF space"]; xLB [label="LB: strict inductive sequence of Banach spaces", href="http://ncatlab.org/nlab/show/LB space"]; xMe [label="Me: Metrisable", href="http://ncatlab.org/nlab/show/metrisable topological vector space"]; node [shape=box, style=filled, fillcolor="#bbffff"]; xLC [label="LC: Locally Complete", href="http://ncatlab.org/nlab/show/locally complete topological vector space"]; xQC [label="QC: Quasi-Complete", href="http://ncatlab.org/nlab/show/quasi-complete topological vector space"]; } subgraph cluster_key_col3 { color=white; node [label="",width=0,style=invis]; yPt; yBC; ySq; yCp; yRe; ySR; yQB; yMk; yBl; yZ3; } subgraph key2 { node [shape=box, style=filled, fillcolor="#bbffff"]; xPt [label="Pt: Ptak Space", href="http://ncatlab.org/nlab/show/Ptak space"]; xBC [label="BC: Br Space", href="http://ncatlab.org/nlab/show/Ptak space"]; xSq [label="Sq: Sequentially Complete", href="http://ncatlab.org/nlab/show/sequentially complete topological vector space"]; xCp [label="Cp: Complete", href="http://ncatlab.org/nlab/show/complete topological vector space"]; node [shape=box, style=filled, fillcolor="#ffbbff"]; xRe [label="Re: Reflexive", href="http://ncatlab.org/nlab/show/reflexive topological vector space"]; xSR [label="SR: Semi-Reflexive", href="http://ncatlab.org/nlab/show/semi-reflexive topological vector space"]; xQB [label="QB: Quasi-Barrelled", href="http://ncatlab.org/nlab/show/quasi-barrelled topological vector space"]; xMk [label="Mk: Mackey", href="http://ncatlab.org/nlab/show/Mackey topological vector space"]; xBl [label="Bl: Barrelled", href="http://ncatlab.org/nlab/show/barrelled topological vector space"]; } edge [style=invis]; yFD -> yHi; yHi -> yNu; yNu -> yBa; yBa -> yIP; yIP -> yMo; yMo -> ySc; ySc -> yUB; yUB -> yFr; yFr -> yZ1; yDF -> yNo; yNo -> yBo; yBo -> yLF; yLF -> yLB; yLB -> yMe; yMe -> yLC; yLC -> yQC; yQC -> yZ2; yPt -> yBC; yBC -> ySq; ySq -> yCp; yCp -> yRe; yRe -> ySR; ySR -> yQB; yQB -> yMk; yMk -> yBl; yBl -> yZ3; yFD -> xFD; yHi -> xHi; yNu -> xNu; yBa -> xBa; yIP -> xIP; yMo -> xMo; ySc -> xSc; yUB -> xUB; yFr -> xFr; yDF -> xDF; yNo -> xNo; yBo -> xBo; yLF -> xLF; yLB -> xLB; yMe -> xMe; yLC -> xLC; yQC -> xQC; yPt -> xPt; yBC -> xBC; ySq -> xSq; yCp -> xCp; yRe -> xRe; ySR -> xSR; yQB -> xQB; yMk -> xMk; yBl -> xBl; /* FD -> Hi; FD -> SC; FD -> Nu; FD -> Mo; Hi -> Ba; Hi -> IP; Hi -> Re; SC -> Me; SC -> Se; Mo -> Re; Mo -> Pc; Nu -> Sc; Ba -> UB; Ba -> Fr; Ba -> DF; Ba -> No; IP -> No; Re -> Bl; Re -> SR; UB -> Bo; Fr -> Cn; Fr -> Cp; Fr -> Br; Fr -> Me; Cn -> Bo; Cn -> LC; Cp -> QC; Br -> Bl; Me -> Bo; Me -> Pc; SR -> QC; Bo -> QB; Bl -> QB; QC -> Sq; Pc -> Nm; QB -> Mk; Nm -> CP; Sq -> LC; LB -> LF; LF -> Cp; QCBo -> QC; QCBo -> Bo; QCBo -> Bl; Hi -> AP; Nu -> AP; QCQB -> Bl; QCQB -> QC; Pt -> BC; BC -> Cp; Fr -> Pt; Fr -> LF; Ba -> LB; */ } /*\end{verbatim} \emph{/} \end{document}