\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semi-abelian category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{semiabelian_categories}{}\section*{{Semiabelian categories}}\label{semiabelian_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{doldkan_correspondence}{Dold--Kan correspondence}\dotfill \pageref*{doldkan_correspondence} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The axioms of a \emph{semi-abelian} category are supposed to capture the properties of the categories of [[groups]], [[rng|rings without unit]], [[associative algebras]] without unit, [[Lie algebras]], as nicely as the axioms of an [[abelian category]] captures the properties of the categories of [[abelian groups]] and of [[modules]]. [[Mike Shulman|Mike]]: Why only rings without units (that is, rngs)? Intuitively, what important properties do the above listed examples share that are not shared by rings with units? [[Zoran Skoda]]: I want to know the answer as well. It might be something in the self-dual axioms. For unital rings artinian implies noetherian but not other way around; though the definitions of the two notions are dual. \emph{Toby}: The category of unital rings and unitary ring homomorphisms has no zero object. [[Mike Shulman|Mike]]: Ah, right. Is it protomodular? I think I will understand this definition better from some non-examples that violate each clause individually. [[arsmath|walt]]: It is protomodular. This follows from the main theorem of \emph{Characterization of Protomodular Varieties of Universal Algebra} by Bourn and Janelidze. By that theorem any variety that contains a group will be protomodular. Unital rings only fail to be semiabelian for the trivial reason that ideals aren't subrings. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[category]] $C$ is \textbf{semi-abelian} if it \begin{itemize}% \item is [[exact category|Barr-exact]] (hence [[regular category|regular]] and in particular has finite [[limit]]s); \item has a [[zero object]]; \item has finite [[coproduct]]s; and \item is [[protomodular category|protomodular]]. \end{itemize} In other words, it is a [[homological category]] which is [[Barr-exact]] and has finite [[coproducts]]. Equivalently, $C$ is semi-abelian if: \begin{itemize}% \item it has finite [[product]]s and [[coproduct]]s and a [[zero object]]; \item it has [[pullback]]s of [[monomorphism]]s (or even only of [[split monomorphism]]s); \item it has [[coequalizer]]s of [[kernel pair]]s; \item [[regular epimorphism]]s are stable under [[pullback]]; \item [[congruence|equivalence relations]] are effective; and \item the \emph{Split Short [[five lemma|Five Lemma]]} holds: \end{itemize} \begin{udefn} \textbf{(split short five lemma)} Given a [[commutative diagram]] \begin{displaymath} \itexarray{ L & \overset{l}{\to} & F & \overset{q}{\to} & C \\ {}^{\mathllap{u}}\downarrow && \downarrow^{\mathrlap{w}} && \downarrow^{\mathrlap{v}} \\ K & \underset{k}{\to} & E& \underset{p}{\to} & B } \end{displaymath} where \begin{itemize}% \item $p$ and $q$ are [[split epimorphism]]s \item and $l$ and $k$ are their [[kernel]]s, \end{itemize} then if $u$ and $v$ are [[isomorphism]]s so is $w$. \end{udefn} To see that the second list of axioms implies the existence of finite limits, observe that the pullback \begin{displaymath} \itexarray{P & \to & A\\ \downarrow && \downarrow^f\\ B& \underset{g}{\to} & C} \end{displaymath} can be computed as the pullback \begin{displaymath} \itexarray{P & \to & A\times B\\ \downarrow && \downarrow^{(1,1,f)}\\ A\times B& \underset{(1,1,g)}{\to} & A\times B\times C} \end{displaymath} in which both legs are split monics. Filling in one of the equivalent definitions of Barr-exactness, the equivalence of the two lists of axioms reduces to showing that in a Barr-exact category with coproducts and a zero object, protomodularity is equivalent to the Split Short Five Lemma; see the paper referenced below for a proof. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every [[abelian category]] is semi-abelian. Conversely, a semi-abelian category is abelian if and only if it is [[additive category|additive]] (since any exact additive category is abelian), and if and only if its opposite is semi-abelian. \item The category [[Grp]] of not-necessarily-abelian [[group]]s is semi-abelian but not [[abelian category|abelian]]. So are the categories of rings without units, algebras without units, Lie algebras, and many other sorts of algebras. (The category of rings with unit is not semi-abelian since it lacks a zero object.) \item More generally, the category of internal [[group object]]s in any exact category is semi-abelian as soon as it has finite coproducts. For instance, this applies to internal groups in any [[topos]] with a [[natural numbers object|NNO]]. \item The opposite of any [[topos]], such as $Set^{op}$, is Barr-exact and protomodular, but obviously lacks a zero object. \item The category of Heyting semilattices \item The category of (ordinary) Lie algebras \item The category $Set_*$ of [[pointed set]]s is Barr-exact with finite coproducts and a zero object, but is not semi-abelian: protomodularity and the Split Short Five Lemma fail to hold. \item If $C$ is exact and protomodular with finite colimits, then for any $x\in C$ the [[over category|over]]-[[under category|under]] category $(x/C/x)$ is semi-abelian. For example, the opposite of the category of [[pointed object|pointed objects]] in a [[topos]] is semi-abelian, and in particular, $Set_*^{op}$ is semi-abelian. \end{itemize} [[Urs Schreiber|Urs]]: how can I understand that this (has to?) involve the opposite category? [[Mike Shulman|Mike]]: Well, as the previous example shows, $Set_*$ itself is not semi-abelian. The way I'm thinking of it is that a surjection of pointed sets is not determined by its kernel, but an injection of pointed sets is determined by its cokernel. \begin{itemize}% \item The categories of [[crossed module|crossed modules]], [[crossed complex]]es, and their friends are semi-abelian; see example 4.2.6 of the Van der Linden paper referenced below. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} (\ldots{}) \hypertarget{doldkan_correspondence}{}\subsubsection*{{Dold--Kan correspondence}}\label{doldkan_correspondence} \begin{itemize}% \item The analogue of a [[Dold–Kan correspondence]] holds for [[simplicial object]]s in semi-abelian categories. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[George Janelidze]], L\'a{}szl\'o{} M\'a{}rki, [[Walter Tholen]], \emph{Semi-abelian categories}, J. Pure Appl. Alg. \textbf{168}, 2-3 (2002) 367-386, \item [[Dominique Bourn]], [[Francis Borceux]], [[Mal'cev, protomodular, homological and semi-abelian categories]], Kluwer 2004. \item Dominique Bourn, [[Maria Manuel Clementino]], \emph{Categorical and topological aspects of semi-abelian theories} , lecture notes Haute Bodeux 2007. (\href{http://www.math.yorku.ca/~tholen/HB07BournClementino.pdf}{pdf}) \item [[Tim Van der Linden]], \emph{Homology and homotopy in semi-abelian categories}, \href{http://arxiv.org/abs/math/0607100}{math/0607100}. \end{itemize} [[!redirects semi-abelian category]] [[!redirects semi-abelian categories]] [[!redirects semiabelian category]] [[!redirects semiabelian categories]] \end{document}