\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semi-left-exact left Bousfield localization} \hypertarget{semileftexact_left_bousfield_localizations}{}\section*{{Semi-left-exact left Bousfield localizations}}\label{semileftexact_left_bousfield_localizations} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} When constructing a general [[left Bousfield localization]] of a [[cofibrantly generated model category]] $C$ at a set of maps $S$, it is fairly straightforward to construct a [[localization]] functor, i.e. a [[fibrant replacement]] functor for the putative localized [[model category]] $L_S C$, by a [[small object argument]]. We represent the maps in $S$ by cofibrations between [[cofibrant]] objects, take their [[pushout]] products with all boundary inclusions $\partial \Delta^n \hookrightarrow \Delta^n$ (assuming for simplicity that $C$ is a [[simplicial model category]]), and add all the generating [[acyclic cofibrations]] of $C$. Then an object $Z$ has the right lifting property with respect to this set if and only if it is [[fibrant]] in $C$ (because we added the generating acyclic cofibrations of $C$) and for all $f:A\to B$ in $S$ the induced map $Map(B,Z) \to Map(A,Z)$ of simplicial mapping spaces (which is a fibration since $f$ is a cofibration and $Z$ is fibrant) is an acyclic fibration, i.e. $Z$ is $S$-local. However, it is much harder to construct a factorization of an \emph{arbitrary} map as an $S$-acyclic cofibration followed by an $S$-fibration --- one has to use a cardinality argument to obtain a set of generating $S$-acyclic cofibrations --- and accordingly the $S$-fibrations have no explicit description. This can be seen as a homotopy-theoretic analogue of the construction of a [[reflective factorization system]]. The localization functor exhibits the $S$-local objects as a [[reflective subcategory]], while the $S$-acyclic cofibrations and $S$-fibrations are a model-categorical representation of the corresponding reflective [[factorization system]], whose left class consists of the morphisms inverted by the [[reflector]] (here, the $S$-local equivalences) and whose right class is defined by orthogonality to these. Even in [[1-category theory]], constructing reflective factorizations requires finicky cardinality or size-based arguments as well. However, there are some reflections, such as the [[semi-left-exact reflections]], for which the [[reflective factorization system]] can be constructed by a direct argument in one step. The homotopy-theoretic analogue of these is a \textbf{semi-left-exact left Bousfield localization}. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} The following is Theorem 1.1 of \hyperlink{Stanculescu}{Stanculescu}, which is an improved version of Theorems 9.3 and 9.7 from \hyperlink{Bousfield01}{Bousfield 2001}, which are in turn an improved version of Appendix A of \hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78}. $\backslash$begin\{theorem\} Let $C$ be a [[model category]] and $Q:C\to C$ a functor equipped with a natural transformation $\alpha:Id\to Q$ such that \begin{enumerate}% \item $Q$ is a [[homotopical functor]], i.e. preserves weak equivalences. \item For each $X\in C$, the map $Q \alpha_X:Q X \to Q Q X$ is a weak equivalence, and the map $\alpha_{Q X}:Q X \to Q Q X$ becomes a [[monomorphism]] in the [[homotopy category]]. \item Define an object $X$ to be $Q$-local if it is fibrant and $X\to Q X$ is a weak equivalence, and define a morphism $f$ to be a $Q$-equivalence if $Q f$ is a weak equivalence. Then pullback along fibrations between $Q$-local objects preserves $Q$-equivalences. \end{enumerate} Then there is a new model structure $C^Q$ on $C$ whose cofibrations are those of $C$, whose weak equivalences are the $Q$-equivalences, and whose fibrations are the maps whose $\alpha$-naturality-square is a [[homotopy pullback]]. Moreover, $C^Q$ is [[proper model category|right proper]], and simplicial if $C$ is. $\backslash$end\{theorem\} The first two conditions say essentially that $Q$ is a homotopical reflection into some subcategory (namely the $Q$-local objects). The third condition says that it is semi-left-exact (a 1-categorical reflection of $C$ into $B\subseteq C$ is semi-left-exact if and only if pullback along morphisms in $B$ preserves morphisms that are inverted by the reflector). For details of the proof, see the references. The central point is the construction of the factorization into an $S$-acyclic cofibration and an $S$-fibration, which proceeds by first applying $Q$ along with fibrant replacement, then taking a homotopy pullback: the same way that a [[reflective factorization system]] is constructed from a [[semi-left-exact reflection]] in 1-category theory. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item Right properness of semi-left-exact left Bousfield localizations was also shown in \hyperlink{GK}{Gepner-Kock, Prop. 7.8}, with special attention paid to [[type-theoretic model categories]]. \item Nullification, i.e. localization at a family of maps $A\to \ast$, is always semi-left-exact. (Indeed, nullification is what in [[homotopy type theory]] is called a [[higher modality]], and has [[stable units|reflection with stable units]], a stronger condition.) \item [[left-exact reflection|Left exact]] reflections are always semi-left exact. In particular, the left-exact localizations that present [[Grothendieck (∞,1)-toposes]] can be constructed in this way. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Aldridge Bousfield]], [[Eric Friedlander]], def. 1.1.6 in \emph{Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets}, Springer Lecture Notes in Math., Vol. 658, Springer, Berlin, 1978, pp. 80-130. (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/bousfield-friedlander.pdf}{pdf}) \item [[Aldridge Bousfield]], \emph{On the telescopic homotopy theory of spaces}, Trans. Amer. Math. Soc. 353 (2001), 2391-2426, \href{https://www.ams.org/journals/tran/2001-353-06/S0002-9947-00-02649-0/}{web with fulltext} \item [[Alexandru E. Stanculescu]], \emph{Note on a theorem of Bousfield and Friedlander}, Topology and its Applications 155(13), \href{https://arxiv.org/abs/0806.4547}{arxiv:0806.4547}. \item [[Philip Hirschhorn]], chapter 13 of \emph{Model Categories and Their Localizations}, 2003 (\href{http://www.ams.org/bookstore?fn=20&arg1=whatsnew&item=SURV-99}{AMS}, \href{http://www.gbv.de/dms/goettingen/360115845.pdf}{pdf toc}, \href{http://www.maths.ed.ac.uk/~aar/papers/hirschhornloc.pdf}{pdf}) \item Cassidy and H\'e{}bert and [[Max Kelly|Kelly]], ``Reflective subcategories, localizations, and factorization systems''. \emph{J. Austral. Math Soc. (Series A)} 38 (1985), 287--329 (\href{http://journals.cambridge.org/download.php?file=%2FJAZ%2FJAZ1_38_03%2FS1446788700023624a.pdf&code=5796045be8904c5183c2e95bce65491e}{pdf}) \item [[David Gepner]] and [[Joachim Kock]], \emph{Univalence in locally cartesian closed categories}, \href{https://arxiv.org/abs/1208.1749}{arxiv:1208.1749} \end{itemize} [[!redirects semi-left-exact left Bousfield localization]] [[!redirects semi-left-exact left Bousfield localizations]] [[!redirects semi-left-exact Bousfield localization]] [[!redirects semi-left-exact Bousfield localizations]] [[!redirects locally cartesian left Bousfield localization]] [[!redirects locally cartesian left Bousfield localizations]] [[!redirects locally cartesian Bousfield localization]] [[!redirects locally cartesian Bousfield localizations]] \end{document}