\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semi-left-exact reflection} \hypertarget{semileftexact_reflections}{}\section*{{Semi-left-exact reflections}}\label{semileftexact_reflections} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{semi-left-exact reflection} (also called a \emph{locally cartesian reflection}) is a [[reflector]] into a [[reflective subcategory]] that preserves some [[pullbacks]]. It fits into a hierarchy of left-exactness properties for reflectors: $\backslash$begin\{center\} [[left exact reflection|left exact]] $\Rightarrow$ [[reflection with stable units|stable units]] $\Rightarrow$ \textbf{semi-left-exact} $\Rightarrow$ [[simple reflection|simple]] $\backslash$end\{center\} In particular, semi-left-exactness is sufficient to imply that the corresponding [[reflective factorization system]] exists and can be constructed in one step, and that the reflective subcategory inherits [[local cartesian closure]] from the ambient category. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $C$ be a [[category]] with [[finite limits]], and $B\subseteq C$ a [[full subcategory|full]] [[reflective subcategory]] with reflector $L:C\to B$. Let $E$ be the class of morphisms inverted by $L$, and let $M$ be the class of morphisms right orthogonal to $E$, i.e. $(E,M)$ is the associated [[reflective prefactorization system]]. The following is a combination of Theorems 4.1 and 4.3 from \hyperlink{CHK}{CHK} with Proposition 1.3 from \hyperlink{GK}{GK}. $\backslash$begin\{theorem\} The following are equivalent: \begin{enumerate}% \item Every pullback of an $E$-morphism along an $M$-morphism is an $E$-morphism. \item Every pullback of an $E$-morphism along a morphism in $B$ is an $E$-morphism. \item Every pullback of a reflection unit $\eta_x : x \to L x$ along a morphism in $B$ is an $E$-morphism. \item $L$ preserves pullbacks along $M$-morphisms. \item $L$ preserves pullbacks along any morphism in $B$. \item If $f:x\to y$ is a morphism in $B$, then $f^* : C/y \to C/x$ preserves $E$-morphisms. \item (If $C$ is locally cartesian closed) If $f:x\to y$ is a morphism in $B$, then $f_* : C/x \to C/y$ maps $B/x$ into $B/y$. \end{enumerate} They all imply that $(E,M)$ is a factorization system and that the factorization of an arbitrary morphism $f:x\to y$ can be constructed as the following pullback: $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} x $\backslash$ardr $\backslash$ardrr,``\{$\backslash$eta\_x\}'' $\backslash$arddr,``f''' $\backslash$ardr,``\{$\backslash$lambda\_f\}'' description $\backslash$ \& $\backslash$bullet $\backslash$arr,``g''' $\backslash$ard,``\{$\backslash$rho\_f\}'' \& L x $\backslash$ard,``L f'' $\backslash$ \& y $\backslash$arr,``\{$\backslash$eta\_y\}''' \& L y $\backslash$end\{tikzcd\} $\backslash$end\{center\} If these conditions hold, we say that the reflector is \textbf{semi-left-exact}. $\backslash$end\{theorem\} $\backslash$begin\{proof\} Since all morphisms in $B$ are $M$-morphisms, (1)$\Rightarrow$(2) and (4)$\Rightarrow$(5), while (2)$\Rightarrow$(3) since the reflection units are in $E$. And since $E$ consists of the $L$-inverted morphisms, (5)$\Rightarrow$(2) and (4)$\Rightarrow$(1). And clearly (6)$\Rightarrow$(2); while for $f\in B$ the action of $f^*$ on a morphism in $C/y$ is the latter's pullback along a pullback of $f$, and any pullback of $f$ lies in $M$; thus (1)$\Rightarrow$(6). So to complete the equivalence of (1)-(6) it will suffice to show that (3) implies (4). First we prove that (3) implies the factorization exists. For in the diagram above $g$ is a pullback of the unit $y\to L y$ along the morphism $L x \to L y$ in $B$, hence $g\in E$; so by 2-out-of-3 $\lambda_f\in E$, while $\rho_f\in M$ since $M$ is closed under pullback and $L f \in M$. Now this construction implies that if $f\in M$ then $\lambda_f$ is invertible, hence the naturality square for $\eta$ at $f$ is a pullback. Now if we want to pull back some $h:c\to k$ along an $M$-morphism $f:a\to k$, we can paste two pullback squares to obtain a large pullback rectangle: $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} d $\backslash$arr $\backslash$ard \& a $\backslash$ard,``f'' $\backslash$arr,``\{$\backslash$eta\_a\}'' \& L a $\backslash$ard,``\{L f\}''$\backslash$ c $\backslash$arr,``h''' \& k $\backslash$arr,``\{$\backslash$eta\_k\}''' \& L k. $\backslash$end\{tikzcd\} $\backslash$end\{center\} Since $\eta_k \circ h = L h \circ \eta_c$ by naturality, we can now factor this pullback rectangle through the pullback of $f$ along $L h$: $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} d $\backslash$arr,dashed $\backslash$ard \& e $\backslash$arr $\backslash$ard \& L a $\backslash$ard,``\{L f\}''$\backslash$ c $\backslash$arr,``\{$\backslash$eta\_c\}''' \& L c $\backslash$arr,``\{L h\}''' \& L k $\backslash$end\{tikzcd\} $\backslash$end\{center\} so that the left-hand square is also a pullback. But this is a pullback of the reflection unit $\eta_c$ along the map $e\to L c$ that lies in $B$ (since $B$ is closed under pullbacks). Thus by (3) the map $d \to e$ lies in $E$, and hence exhibits $e$ as $L d$. The right-hand pullback square above is then $L$ applied to the given pullback square, so that $L$ indeed preserves this pullback, i.e. (4) holds. Finally, if $C$ is locally cartesian closed, then (6) implies (7) by adjointness, while (7) implies (5) in the form $L/x \circ f^* \cong L/y \circ f^*$ by passage to right-adjoint mates. $\backslash$end\{proof\} Of course, if $L$ preserves all pullbacks (i.e. it is [[left exact reflection|left exact]]), then it is semi-left-exact. The statement about the existence of the reflective factorization system implies that any semi-left-exact reflection is [[simple reflection|simple]]. $\backslash$begin\{remark\} Note that for any $x\in C$, the functor $L/x\colon C/x \to B/L x$ has a right adjoint given by pullback along $\eta_x : x \to L x$. Condition (3) above then says that the counit of this adjunction is an isomorphism, which is to say that this right adjoint is fully faithful. In this form, semi-left-exactness is equivalent to (a particular case of) the notion of \emph{admissible} reflection in [[categorical Galois theory]]. $\backslash$end\{remark\} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[semi-left-exact left Bousfield localization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Cassidy and H\'e{}bert and [[Max Kelly|Kelly]], ``Reflective subcategories, localizations, and factorization systems''. \emph{J. Austral. Math Soc. (Series A)} 38 (1985), 287--329 (\href{http://journals.cambridge.org/download.php?file=%2FJAZ%2FJAZ1_38_03%2FS1446788700023624a.pdf&code=5796045be8904c5183c2e95bce65491e}{pdf}) \item [[David Gepner]] and [[Joachim Kock]], \emph{Univalence in locally cartesian closed categories}, \href{https://arxiv.org/abs/1208.1749}{arxiv:1208.1749} \end{itemize} [[!redirects semi-left-exact reflection]] [[!redirects semi-left-exact reflections]] [[!redirects semi left exact reflection]] [[!redirects semi left exact reflections]] [[!redirects semi left-exact reflection]] [[!redirects semi left-exact reflections]] [[!redirects semi-left exact reflection]] [[!redirects semi-left exact reflections]] [[!redirects semi-left-exact reflector]] [[!redirects semi-left-exact reflectors]] [[!redirects semi left exact reflector]] [[!redirects semi left exact reflectors]] [[!redirects semi left-exact reflector]] [[!redirects semi left-exact reflectors]] [[!redirects semi-left exact reflector]] [[!redirects semi-left exact reflectors]] [[!redirects semi-left-exact reflective subcategory]] [[!redirects semi-left-exact reflective subcategories]] [[!redirects semi left exact reflective subcategory]] [[!redirects semi left exact reflective subcategories]] [[!redirects semi left-exact reflective subcategory]] [[!redirects semi left-exact reflective subcategories]] [[!redirects semi-left exact reflective subcategory]] [[!redirects semi-left exact reflective subcategories]] [[!redirects semi-left-exact localization]] [[!redirects semi-left-exact localizations]] [[!redirects semi left exact localization]] [[!redirects semi left exact localizations]] [[!redirects semi left-exact localization]] [[!redirects semi left-exact localizations]] [[!redirects semi-left exact localization]] [[!redirects semi-left exact localizations]] [[!redirects semi-left-exact localisation]] [[!redirects semi-left-exact localisations]] [[!redirects semi left exact localisation]] [[!redirects semi left exact localisations]] [[!redirects semi left-exact localisation]] [[!redirects semi left-exact localisations]] [[!redirects semi-left exact localisation]] [[!redirects semi-left exact localisations]] [[!redirects locally cartesian reflection]] [[!redirects locally cartesian reflections]] [[!redirects locally cartesian reflector]] [[!redirects locally cartesian reflectors]] [[!redirects locally cartesian localization]] [[!redirects locally cartesian localizations]] [[!redirects locally cartesian localisation]] [[!redirects locally cartesian localisations]] \end{document}