\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semicartesian monoidal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{semicartesian_monoidal_categories}{}\section*{{Semicartesian monoidal categories}}\label{semicartesian_monoidal_categories} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{internal_logic}{Internal logic}\dotfill \pageref*{internal_logic} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{semicartesian_vs_cartesian}{Semicartesian vs. cartesian}\dotfill \pageref*{semicartesian_vs_cartesian} \linebreak \noindent\hyperlink{definition_in_terms_of_projections}{Definition in terms of projections}\dotfill \pageref*{definition_in_terms_of_projections} \linebreak \noindent\hyperlink{colax_functors}{Colax functors}\dotfill \pageref*{colax_functors} \linebreak \noindent\hyperlink{semicartesian_operads}{Semicartesian operads}\dotfill \pageref*{semicartesian_operads} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[monoidal category]] is \textbf{semicartesian} if the unit for the tensor product is a [[terminal object]], a weakening of the concept of [[cartesian monoidal category]]. Many semicartesian monoidal categories are also [[symmetric monoidal category|symmetric]], and sometimes that is included in the definition. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Some examples of semicartesian monoidal categories that are not cartesian include the following. \begin{itemize}% \item The category of [[Poisson manifold]]s with the usual product of Poisson manifolds as its tensor product. \item The opposite of the category of [[associative algebra]]s over a given [[base field]] $k$ with its usual tensor product $A \otimes B$. \item The category [[Cat]] with the non-standard non-cartesian [[funny tensor product]]. \item The category of [[strict 2-categories]] with the [[Gray tensor product]], and the category of [[strict omega-categories]] with the [[Crans-Gray tensor product]]. \item The category of [[affine space|affine spaces]] made into a [[closed monoidal category]] where the [[internal hom]] has $hom(x,y)$ being the set of affine linear maps from $x$ to $y$, made into an affine space via pointwise operations. \item The category of [[convex space|convex spaces]], also known as `barycentric algebras', made into a closed monoidal category where the internal hom has $hom(x,y)$ being the set of convex linear maps from $x$ to $y$, made into an barycentric algebra via pointwise operations. \item The thin category associated to the linear order $([0, \infty], \ge)$ of extended nonnegative real numbers with addition as the tensor product and [[internal hom]] as truncated subtraction. \item If $(M, \otimes, I)$ is any monoidal category, $I$ being the monoidal unit, the [[slice category]] $M/I$ inherits a monoidal product given by \begin{displaymath} (X \stackrel{f}{\to} I) \otimes (Y \stackrel{g}{\to} I) = (X \otimes Y \stackrel{f \otimes g}{\to} I \otimes I \cong I) \end{displaymath} where the isomorphism displayed is the canonical one. This monoidal product is semicartesian. The forgetful functor $\Sigma: M/I \to M$ is strong monoidal, and is universal in the sense of exhibiting the fact that semicartesian monoidal functors and strong monoidal functors form a coreflective sub-bicategory of the bicategory of monoidal categories and strong monoidal functors. (Check this.) \item The category of [[nominal sets]] is cartesian closed but also semi-cartesian closed if taken with the separated product, see Chapter 3.4 of Pitts' monograph Nominal Sets. \end{itemize} \hypertarget{internal_logic}{}\subsection*{{Internal logic}}\label{internal_logic} The [[internal logic]] of a (symmetric) semicartesian monoidal category is [[affine logic]], which is like [[linear logic]] but permits the [[weakening rule]] (and also the [[exchange rule]], if the monoidal structure is symmetric). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{semicartesian_vs_cartesian}{}\subsubsection*{{Semicartesian vs. cartesian}}\label{semicartesian_vs_cartesian} In a semicartesian monoidal category, any tensor product of objects $x \otimes y$ comes equipped with morphisms \begin{displaymath} p_x : x \otimes y \to x \end{displaymath} \begin{displaymath} p_y : x \otimes y \to y \end{displaymath} given by \begin{displaymath} x \otimes y \stackrel{1 \otimes e_y}{\longrightarrow} x \otimes I \stackrel{r_x}{\longrightarrow} x \end{displaymath} and \begin{displaymath} x \otimes y \stackrel{e_x \otimes 1}{\longrightarrow} I \otimes y \stackrel{\ell_y}{\longrightarrow} y \end{displaymath} respectively, where $e$ stands for the unique morphism to the terminal object and $r$, $\ell$ are the right and left unitors. We can thus ask whether $p_x$ and $p_y$ make $x \otimes y$ into the [[product]] of $x$ and $y$. If so, it is a theorem that $C$ is a cartesian monoidal category. (This theorem has been observed by Eilenberg and Kelly (\hyperlink{EilKel66}{1966}, p.551), but they may not have been the first to note it.) Alternatively, suppose that $(C, \otimes, I)$ is a monoidal category equipped with monoidal natural transformations $e_x : x \to I$ and $\Delta_x: x \to x \otimes x$ such that \begin{displaymath} x \stackrel{\Delta_x}{\longrightarrow} x \otimes x \stackrel{e_x \otimes 1}{\longrightarrow} I \otimes x \stackrel{\ell_x}{\longrightarrow} x \end{displaymath} and \begin{displaymath} x \stackrel{\Delta_x}{\longrightarrow} x \otimes x \stackrel{1 \otimes e_x}{\longrightarrow} x \otimes I \stackrel{r_x}{\longrightarrow} x \end{displaymath} are identity morphisms. Then $(C, \otimes, I)$ is a cartesian monoidal category. So, suppose $(C, \otimes, 1)$ is a semicartesian monoidal category. The unique map $e_x : x \to I$ is a monoidal natural transformation. Thus, if there exists a monoidal natural transformation $\Delta_x: x \to x \otimes x$ obeying the above two conditions, $(C, \otimes, 1)$ is cartesian. The converse is also true. The characterization of cartesian monoidal categories in terms of $e$ and $\Delta$, apparently discovered by Robin Houston, is mentioned here: \begin{itemize}% \item John Baez, Universal algebra and diagrammatic reasoning, 2006. \href{http://math.ucr.edu/home/baez/universal/}{pdf} \end{itemize} and as of 2014, Nick Gurski plans to write up the proof in a paper on semicartesian monads. \hypertarget{definition_in_terms_of_projections}{}\subsubsection*{{Definition in terms of projections}}\label{definition_in_terms_of_projections} For a monoidal category to be semicartesian it suffices that it admit a family of ``projection morphisms''. Specifically, suppose $C$ is a monoidal category together with natural ``projection'' transformations $\pi^1_{X,Y}:X\otimes Y \to X$ such that $\pi^1_{I,I}:I\otimes I\to I$ is the unitor isomorphism. Then the composites $Y \cong I\otimes Y \to I$ form a cone under the identity functor with vertex $I$ whose component at $I$ is the identity; hence $I$ is a [[terminal object]] and so $C$ is semicartesian. However, it doesn't follow from this that the given projections $\pi^1_{X,Y}$ are the same as those derivable from semicartesianness! For that one needs extra axioms; see \href{https://golem.ph.utexas.edu/category/2016/08/monoidal_categories_with_proje.html#c056710}{this cafe discussion} for details. \hypertarget{colax_functors}{}\subsubsection*{{Colax functors}}\label{colax_functors} It is well-known that any functor between cartesian monoidal categories is automatically and uniquely [[colax monoidal functor|colax monoidal]]; the colax structure maps are the comparison maps $F(x\times y) \to F x \times F y$ for the cartesian product. (This also follows from abstract nonsense given that the [[2-monad]] for cartesian monoidal categories is [[colax-idempotent 2-monad|colax-idempotent]].) An inspection of the proof reveals that this property only requires the domain category to be semicartesian monoidal, although the codomain must still be cartesian. \hypertarget{semicartesian_operads}{}\subsubsection*{{Semicartesian operads}}\label{semicartesian_operads} The notion of [[semicartesian operad]] is a type of [[generalized multicategory]] which corresponds to semicartesian monoidal categories in the same way that [[operads]] correspond to (perhaps symmetric) monoidal categories and [[Lawvere theories]] correspond to cartesian monoidal categories. Applications of semicartesian operads include: \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2009/10/generalized_operads_in_classic.html}{Generalized operads in classical algebraic topology} (blog post) -- this also uses the above fact about colax functors \item \href{http://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html#c038131}{Characterizing finite measure spaces} (blog comment) \end{itemize} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[cartesian monoidal category]] \item A [[relevance monoidal category]] is the ``dual'' of a semicartesian monoidal category, with diagonals but not projections. \end{itemize} \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} \begin{itemize}% \item [[Samuel Eilenberg|S. Eilenberg]], [[Max Kelly|M. G. Kelly]], \emph{Closed Categories} , pp.421-562 in Eilenberg et al. (eds.), \emph{Proceedings of the Conference on Categorical Algebra - La Jolla 1965} , Springer Heidelberg 1966. \item \href{https://golem.ph.utexas.edu/category/2016/08/monoidal_categories_with_proje.html}{Monoidal Categories with Projections} (blog discussion) \end{itemize} [[!redirects semicartesian category]] [[!redirects semi-cartesian category]] [[!redirects semi-Cartesian category]] [[!redirects semicartesian monoidal categories]] [[!redirects semi-cartesian monoidal category]] [[!redirects semi-cartesian monoidal categories]] [[!redirects semicartesian categories]] [[!redirects semi-cartesian categories]] [[!redirects semi-Cartesian categories]] \end{document}