\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semicategory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToCategories}{Relation to categories}\dotfill \pageref*{RelationToCategories} \linebreak \noindent\hyperlink{nerves_and_semisimplicial_sets}{Nerves and semi-simplicial sets}\dotfill \pageref*{nerves_and_semisimplicial_sets} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{semicategory} or \emph{non-unital category} is like that of \emph{[[category]]} but omitting the requirement of [[identity]]-morphisms. This generalizes the notions of [[semigroup]], [[semiring]], etc: \begin{itemize}% \item a [[semigroup]] is (the [[hom-set]] of) a semicategory with a single object; \item a [[semiring]] is (the [[hom-set]] of) a semicategory [[enriched category|enriched]] in [[Ab]] with a single object. \end{itemize} Semicategories, like categories, appear as [[semipresheaf|semipresheaves]] on the category with two objects and two morphisms. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SemiCategory}\hypertarget{SemiCategory}{} A (small) \textbf{semicategory} or \textbf{non-unital category} $\mathcal{C}$ consists of \begin{itemize}% \item a [[set]] $\mathcal{C}_0$ of \emph{[[objects]]}; \item a set $\mathcal{C}_1$ of \emph{[[morphisms]]} (or \emph{arrows}); \item two [[functions]] $s, t : \mathcal{C}_1 \to \mathcal{C}_0$ called \emph{source} (or \emph{domain}) and \emph{target} (or \emph{codomain}); \begin{itemize}% \item one writes $f : x \to y$ if $s(f) = x$ and $t(f) = y$; \end{itemize} \item a [[function]] $\circ \colon \mathcal{C}_1 \times_{t,s} \mathcal{C}_1 \to \mathcal{C}_1$ ([[composition]]) from the set of pairs of morphisms such that the target of the first is the source of the second; \end{itemize} such that the following properties are satisfied: \begin{itemize}% \item source and target are respected by composition: $s(g \circ f) = s(f)$ and $t(g\circ f) = t(g)$; \item composition is \emph{[[associativity|associative]]}: $(h \circ g)\circ f = h\circ (g \circ f)$ whenever $t(f) = s(g)$ and $t(g) = s(h)$. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} If one added to this definition the existence of a function $i \colon C_0 \to C_1$ such that for all $c \in C_0$ the morphism $i(c)$ is an [[identity]] on $c$ under the given [[composition]], then one has the defintion of a [[category]]. However, having [[identities]] is just an extra [[property]] on a semi-category, not extra [[structure]]. For more on this see below at \emph{\hyperlink{RelationToCategories}{Relation to categories}}. \end{remark} \begin{remark} \label{}\hypertarget{}{} One often writes $hom(x,y)$, $hom_C(x,y)$, or $C(x,y)$ for the collection of morphisms $f : x \to y$; the latter two have the advantage of making clear which category is being discussed. People also often write $x \in C$ instead of $x \in C_0$ as a short way to indicate that $x$ is an object of $C$. Also, some people write $Ob(C)$ and $Mor(C)$ instead of $C_0$ and $C_1$. \end{remark} \begin{defn} \label{SemiFunctor}\hypertarget{SemiFunctor}{} For $\mathcal{C}, \mathcal{D}$ two semicategories, a [[semi-functor]] $F \colon \mathcal{C} \to \mathcal{D}$ is a pair of [[functions]] $F_0 \colon \mathcal{C}_0 \to \mathcal{D}_0$, $F_1 \colon \mathcal{C}_1 \to \mathcal{D}_1$ that respects all the given [[structure]] in the obvious way. Write $SemiCat$ for the ([[large category|large]]) [[category]] whose objects are semicategories, and whose morphisms are semifunctors. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToCategories}{}\subsubsection*{{Relation to categories}}\label{RelationToCategories} We discuss the relation of semicategories to [[categories]]. (See for instance the beginning of (\hyperlink{Harpaz}{Harpaz}) for a quick review of basics, with an eye towards their generalization to the relation between [[complete Segal spaces]] and [[complete semi-Segal spaces]].) \begin{defn} \label{ForgetfulFromCatToSemicat}\hypertarget{ForgetfulFromCatToSemicat}{} There is an evident [[forgetful functor]] \begin{displaymath} U \colon Cat \to SemiCat \end{displaymath} from the [[category]] [[Cat]] of [[categories]] to that of semicategories, def. \ref{SemiFunctor}, given simply by forgetting the identity-assigning map $i \colon \mathcal{C}_0 \to \mathcal{C}_1$ in a category. \end{defn} \begin{defn} \label{SetNeutralElementsInEndoSemiMonoids}\hypertarget{SetNeutralElementsInEndoSemiMonoids}{} For $\mathcal{C}$ a semi-category, def. \ref{SemiCategory}, write \begin{displaymath} Id(\mathcal{C}_1) \hookrightarrow \mathcal{C}_1 \end{displaymath} for the [[subset]] on those morphisms which are [[endomorphisms]] on some object $x \in \mathcal{C}_0$ and such that they are neutral elements in their endomorphisms [[semimonoids]] $End_{\mathcal{C}}(x)$. \end{defn} \begin{prop} \label{CategoriesAreSemicategoriesWithUnits}\hypertarget{CategoriesAreSemicategoriesWithUnits}{} A semicategory is the semicategory underlying a category, hence is in the image of the functor $U$ of def. \ref{ForgetfulFromCatToSemicat}, precisely if every object has a neutral [[endomorphism]], hence precisely if the composite diagonal function in \begin{displaymath} \itexarray{ Id(\mathcal{C}_1) &\hookrightarrow& \mathcal{C}_1 \\ & {}_{\mathllap{\simeq}}\searrow & \downarrow^{\mathrlap{s}} \\ && \mathcal{C}_0 } \end{displaymath} is an [[isomorphism]], where the horizontal function is that of def. \ref{SetNeutralElementsInEndoSemiMonoids}. Moreover, if a semicategory lifts to a category, it does so in a unique way: the functor $U \colon Cat \to SemiCat$ is an [[injection]] on [[isomorphism classes]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} Equivalently one could use the target map instead of the source map in the formulation of prop. \ref{CategoriesAreSemicategoriesWithUnits}. \end{remark} \begin{remark} \label{}\hypertarget{}{} The diagram appearing in prop. \ref{CategoriesAreSemicategoriesWithUnits} is a simple version of the [[univalence]] condition appearing in definition of a [[complete semi-Segal space]], a [[category object in an (infinity,1)-category|semi-category object in an (infinity,1)-category]]. See there for more on this. \end{remark} \begin{prop} \label{idempotents}\hypertarget{idempotents}{} The functor $U$ of def. \ref{ForgetfulFromCatToSemicat} has a [[left adjoint]], which [[free functor|freely]] adjoins identity morphisms to a semicategory in the obvious way. It also has a [[right adjoint]], which sends a semicategory $S$ to the category whose objects are the [[idempotents]] of $S$ and whose morphisms are the morphisms of $S$ that commute suitably with them, as described at [[Karoubi envelope]]. Indeed, the [[monad]] on [[Cat]] generated by this latter [[adjunction]] is exactly the monad for \emph{[[idempotent completion]]}, also called [[Cauchy completion]]. (Note, however, that this is not a [[2-monad]], because the right adjoint of $U$ is not a [[2-functor]].) \end{prop} \hypertarget{nerves_and_semisimplicial_sets}{}\subsubsection*{{Nerves and semi-simplicial sets}}\label{nerves_and_semisimplicial_sets} The [[nerve]] of a semicategory is a [[semi-simplicial set]] which satisfies the [[Segal conditions]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Start with the category of metric spaces and short maps. An occasionally useful semicategory can be formed from it by considering the nonempty spaces and strictly contractive functions. This is a semicategory, since: \begin{itemize}% \item the composition of two strictly contractive functions is strictly contractive \item identity maps are not contractive (they are trivial isometries) \end{itemize} The interest in this semicategory arises from the fact that all morphisms $f : A \to A$ have unique fixed points, by Banach's fixed point theorem. \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} The concept of semicategory has more or less evident analogs and generalizations in [[higher category theory]]. For models of higher categories by [[simplicial set]]s, i.e. presehaves on the [[simplex category]] (such as [[Kan complex]]es, [[quasi-categories]], [[weak complicial set]]s) the corresponding semi-category notion is obtained by discarding the degeneracy maps (which are the identity-assigning maps in the simplicial framework), i.e. by considering just presheaves on the subcategory $\Delta_+ \subset \Delta$ on injective morphisms (see the discuss of $\Delta_+$ at [[Reedy model structure]] for more details). Accordingly, there is the semi-category analog of a [[Segal space]], called a \emph{[[semi-Segal space]]}. [[Simpson's conjecture]] says that every $\infty$-category has a model where all [[composition]] operations are strict and only the [[unit law]]s hold up to [[coherent]] homotopies. This would mean that the $\infty$-semicategory underlying any $\infty$-category can always be chosen to be strict. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semipresheaf]] \item [[regular semicategory]] \item [[non-unital ring]] \item [[semi-simplicial set]] \item [[semi-Segal space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Enriched semicategory theory is developed in \begin{itemize}% \item M.-A. Moens, U. Bernani-Canani, [[Francis Borceux|F. Borceux]], \emph{On regular presheaves and regular semi-categories} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XLIII} no.3 (2002) pp.163-190. (\href{http://www.numdam.org/item?id=CTGDC_2002__43_3_163_0}{numdam}) \end{itemize} This is turned one notch further in \begin{itemize}% \item [[Isar Stubbe]], \emph{Categorical structures enriched in a quantaloid : regular presheaves, regular semicategories} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XLVI} no.2 (2005) pp.99-121. (\href{http://www.numdam.org/item/CTGDC_2005__46_2_99_0}{numdam}) \end{itemize} Semicategories and semigroups are mentioned in section 2 in \begin{itemize}% \item W. Dale Garraway, \emph{Sheaves for an involutive quantaloid}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 46 no. 4 (2005), p. 243-274 (\href{http://www.numdam.org/item?id=CTGDC_2005__46_4_243_0}{numdam}) \end{itemize} Semicategories with an eye towards their generalization to [[semi-Segal spaces]] are briefly discussed at the beginning of \begin{itemize}% \item [[Yonatan Harpaz]], \emph{Quasi-unital $\infty$-Categories} (\href{http://arxiv.org/abs/1210.0212}{arXiv:1210.0212}) \end{itemize} Structures obtained by further relaxing also the [[associativity]] law are discussed in \begin{itemize}% \item Salvatore Tringali, \emph{Plots and Their Applications - Part I: Foundations} (\href{http://arxiv.org/abs/1311.3524}{arXiv:1311.3524}) \end{itemize} [[!redirects semicategories]] [[!redirects semi-category]] [[!redirects semi-categories]] [[!redirects category without units]] [[!redirects categories without units]] \end{document}