\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semiclassical approximation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{related_phenomena}{Related phenomena}\dotfill \pageref*{related_phenomena} \linebreak \noindent\hyperlink{equivariant_localization}{Equivariant localization}\dotfill \pageref*{equivariant_localization} \linebreak \noindent\hyperlink{large_limit_in_gauge_theories}{Large $N$-limit in gauge theories}\dotfill \pageref*{large_limit_in_gauge_theories} \linebreak \noindent\hyperlink{in_radiation_theory}{In radiation theory}\dotfill \pageref*{in_radiation_theory} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} To some extent, [[quantum mechanics]] and [[quantum field theory]] are a [[deformation theory|deformation]] of [[classical mechanics]] and [[classical field theory]], with the deformation parameterized by [[Planck's constant]] $\hbar$. The \emph{semiclassical approximation} or \emph{quasiclassical approximation} to [[quantization]]/[[quantum mechanics]] is the restriction of this deformation to just first order (or some finite order) in $\hbar$. [[!include classical-to-quantum notions - table]] Applied to [[path integral]] [[quantization]], the semiclassical approximation is meant to approximate the [[path integral]] $\int_{\phi \in \mathbf{Fields}} D\phi\; F(\phi) e^{iS(\phi)/\hbar}$ by an expansion in $\hbar$ about the [[critical points]] of the [[action functional]] $S$ (hence the solutions of the [[Euler-Lagrange equations]], hence to the classical trajectories of the system). As usual for the [[path integral]] in [[physics]], this often requires work to make precise, but at a heuristic level the idea is famous as the \emph{[[rotating phase approximation]]}: the idea is that in regions of [[field (physics)|field]]-space where $S$ varies fast as measured in units of [[Planck's constant]], the [[complex number|complex phases]] of the integrand $\exp(i S / \hbar )$ tend to cancel each other in the integral so that substantial contributions to the integral come only from the vicininity of critical points of $S$ (classical [[trajectories]]). But semiclassical approximations can be applied to most other formulations of [[quantum physics]], where they often lead to precise and powerful mathematical tools. Notably in the [[Schrödinger picture]] of quantum evolution, solutions to the [[Schrödinger equation]] $i \hbar \frac{d}{d t} \psi = \hat H \psi$ (which characterizes [[quantum states]] given by [[wave functions]] $\psi$ for [[Hamiltonian mechanics|Hamiltonian dynamics]] induced by a [[Hamilton operator]] $\hat H$) are usefully considered to first (or any finite) order in $\hbar$. This method, known after (some of) its inventors as the \textbf{[[WKB method]]} or similar, amounts to expressing the [[wave function]] in the form $\psi = exp(S)$ where $S$ is a slowly varying function and solving the equation for $S$. Globally consistent such solutions to first order lead to what are called [[Bohr-Sommerfeld leaf|Bohr-Sommerfeld quantization conditions]]. For the formalization of this method in [[symplectic geometry]]/[[geometric quantization]] see at \emph{[[semiclassical state]]}. This [[WKB method]] makes sense for a more general class of [[wave equations]]. For instance in [[wave mechanics|wave]] [[optics]] this yields the short-[[wavelength]] limit of the [[geometrical optics]] approximation. Here $S$ is called the \textbf{[[eikonal]]}. Multidimensional generalization of the [[WKB method]] appear to be rather nontrivial; they have been pioneered by [[Victor Maslov]] who introduced a topological invariant to remove ambiguities of the naive version of the method, called the \emph{[[Maslov index]]}. \hypertarget{related_phenomena}{}\subsection*{{Related phenomena}}\label{related_phenomena} \hypertarget{equivariant_localization}{}\subsubsection*{{Equivariant localization}}\label{equivariant_localization} In some special cases (most often in the presence of supersymmetry) the main contribution (the first term in expansion) amounts to the true result; the quantum correction sometimes leads however to an overall scalar factor. This is the case of so-called localization (related directly in some cases to the equivariant localization in cohomology and Lefshetz-type fixed point formulas). Most of well known examples of integrable systems and TQFTs lead to localization. \hypertarget{large_limit_in_gauge_theories}{}\subsubsection*{{Large $N$-limit in gauge theories}}\label{large_limit_in_gauge_theories} The [[large N limit]] of gauge theories, which is of importance in [[collective field theory]] and in the study of relation between gauge and string theories is formally very similar to semiclassical expansion, where the role of Planck constant is played by $1/N^2$. \hypertarget{in_radiation_theory}{}\subsubsection*{{In radiation theory}}\label{in_radiation_theory} In the theory of radiation there is a different meaning of semiclassical treatment: one considers particles in a sorrounding electromagnetic field and the particles are treated as in finite-dimensional quantum mechanics, with the electromagnetic field as an external classical field coupled to the particles via an interaction term. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} \begin{itemize}% \item M.V. Fedoryuk, \emph{Semi-classical approximation}, Springer \href{http://eom.springer.de/S/s083990.htm}{Online} Enc. of Math. \item Sean Bates, Alan Weinstein, \emph{Lectures on the geometry of quantization}, \href{http://www.math.berkeley.edu/~alanw/GofQ.pdf}{pdf} \item [[Victor Maslov]], \emph{Stationary-phase method for Feynman's continual integral}, Theoret. and Math. Phys., 2:1 (1970), 21--25; Russian original: , 2:1 (1970), 30--35 \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=tmf&paperid=3986&what=fullt&option_lang=rus}{pdf}. \item [[Victor Maslov]], \emph{Theory of perturbations and asymptotic methods} (Russian), Izdat. Moskov. Gos. Univ. 1965. \item [[Vladimir Arnold]], \emph{Characteristic class entering in quantization conditions}, Funct. Anal. its Appl. 1967, 1:1, 1--13, \href{http://dx.doi.org/10.1007/BF01075861}{doi} (. . , `` , '', . ., 1:1 (1967), 1--14, \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=faa&paperid=2802&what=fullt&option_lang=rus}{pdf}) \item [[Victor Guillemin]], [[Shlomo Sternberg]], \emph{Geometric asymptotics}, AMS 1977, \href{http://www.ams.org/online_bks/surv14}{online}; \emph{Semi-classical analysis}, 499 pages, \href{http://www-math.mit.edu/~vwg/semistart.pdf}{pdf} \item A. S. Mishchenko, B. Yu. Sternin, V. E. Shatalov, \emph{Lagrangian manifolds and the canonical operator method}, Nauka, Moscow, 1978. (in Russian). English transl.: \emph{Lagrangian manifolds and the Maslov operator}, Springer, Berlin, 1990. \item [[Richard Szabo]], \emph{Equivariant cohomology and localization of path integrals}, Lecture Notes in Physics, N.S. Monographs \textbf{63}. Springer 2000. xii+315 pp. (early version: \emph{Equivariant localization of path integrals}, \href{http://arxiv.org/abs/hep-th/9608068}{hep-th/9608068}) \item [[Michael Atiyah]], \emph{Circular symmetry and stationary phase approximation}, Asterisque \textbf{131} (1985) 43--59 \item [[Nicole Berline]], [[Ezra Getzler]], [[Michèle Vergne]], \emph{Heat kernels and Dirac operators}, Grundlehren \textbf{298}, Springer 1992, ``Text Edition'' 2003. \item [[Albert Schwarz]], Oleg Zaboronsky, \emph{Supersymmetry and localization}, Comm. Math. Phys. \textbf{183}, 2 (1997), 463-476, \href{http://projecteuclid.org/euclid.cmp/1158328185}{euclid} \item [[Albert Schwarz]], \emph{Semiclassical approximation in [[Batalin-Vilkovisky quantization|Batalin-Vilkovisky formalism]]}, Comm. Math. Phys. \textbf{158} (1993), no. 2, 373--396, \href{http://projecteuclid.org/euclid.cmp/1104254246}{euclid}. \item A. Laptev, I.M. Sigal, \emph{Global Fourier integral operators and semiclassical asymptotics}, Review of Math. Physics, \textbf{12}:5 (2000) 749--766 \href{http://www.math.kth.se/~laptev/Research/Papers/LSig.pdf}{pdf} \item Maurice A. de Gosson, \emph{Symplectic geometry, Wigner-Weyl-Moyal calculus, and quantum mechanics in phase space}, 385 pp. \href{http://opus.kobv.de/ubp/volltexte/2009/3021/pdf/2006_06.pdf}{pdf} \item Semyon Dyatlov, \emph{Semiclassical Lagrangian distributions}, \href{http://math.mit.edu/~dyatlov/files/2012/hlagrangians.pdf}{pdf}; \emph{Hoermander--Kashiwara and Maslov indices}, \href{http://math.berkeley.edu/~dyatlov/files/2009/maslov.pdf}{pdf} \item Shanzhong Sun, \emph{Gutzwiller's semiclassical trace formula and Maslov-type index theory for symplectic paths}, \href{https://arxiv.org/abs/1608.08294}{arxiv/1608.08294} \end{itemize} Borel summability may make sense of the semiclassical expansion to all orders; this approach is sometimes called exact WKB method: \begin{itemize}% \item A. Voros, \emph{The return of the quartic oscillator. The complex WKB method}, Annales de l'institut Henri Poincar\'e{} A39:3, 211-338 (1983) \href{http://eudml.org/doc/76217}{euclid} \item Alexander Getmanenko, Dmitry Tamarkin, \emph{Microlocal properties of sheaves and complex WKB}, \href{http://arxiv.org/abs/1111.6325}{arxiv/1111.6325} \item Kohei Iwaki, Tomoki Nakanishi, \emph{Exact WKB analysis and cluster algebras}, J. Phys. A 47 (2014) 474009 \href{http://arxiv.org/abs/1401.7094}{arxiv/1401.7094}; \emph{Exact WKB analysis and cluster algebras II: simple poles, orbifold points, and generalized cluster algebras}, \href{http://arxiv.org/abs/1409.4641}{arXiv:1409.4641} \end{itemize} Relation to quantum [[integrable system]]s is in a series of works of V Ngc, e.g. \begin{itemize}% \item San V Ngc, \emph{Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type}, Preprint Institut Fourier 433, 1998 15 \href{http://perso.univ-rennes1.fr/san.vu-ngoc/articles/focus-tout.pdf}{pdf}; \emph{Quantum monodromy in integrable systems}, Comm. Math. Phys. 203 (1999), no. 2, 465--479 \href{http://dx.doi.org/10.1007/s002200050621}{doi} \end{itemize} For large N-limit compared to semiclassical expansion see \begin{itemize}% \item L. G. Yaffe, \emph{Large N limits as classical mechanics}, Rev. Mod. Phys. \textbf{54}, 407--435 (1982), \href{http://rmp.aps.org/pdf/RMP/v54/i2/p407_1}{pdf} \end{itemize} For the semiclassical method in [[superstring theory]] see \begin{itemize}% \item J. Maldacena, G. Moore, N. Seiberg, D. Shih, \emph{Exact vs. semiclassical target space of the minimal string}, \href{http://arxiv.org/abs/hep-th/0408039}{hep-th/0408039} \item K. Hori, A. Iqbal, C. Vafa, \emph{D-Branes and mirror symmetry}, \href{http://arxiv.org/abs/hep-th/0005247}{hep-th/0005247} \end{itemize} [[!redirects quasiclassical approximation]] [[!redirects quasi-classical approximation]] [[!redirects semiclassical expansion]] [[!redirects semiclassical analysis]][[!redirects semi-classical analysis]] [[!redirects semiclassical quantization]] [[!redirects semiclassical limit]] [[!redirects semiclassical limits]] \end{document}