\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semiclassical state} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantum_theory}{}\paragraph*{{Geometric quantum theory}}\label{geometric_quantum_theory} [[!include geometric quantization - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{TraditionalInSchrödingerPicture}{Semiclassical state of the non-relativistic particle in a potential}\dotfill \pageref*{TraditionalInSchrödingerPicture} \linebreak \noindent\hyperlink{as_a_wave_function}{As a wave function}\dotfill \pageref*{as_a_wave_function} \linebreak \noindent\hyperlink{as_a_lagrangian_submanifold_of_phase_space_equipped_with_a_halfdensity}{As a Lagrangian submanifold of phase space equipped with a half-density}\dotfill \pageref*{as_a_lagrangian_submanifold_of_phase_space_equipped_with_a_halfdensity} \linebreak \noindent\hyperlink{InSymplecticGeometry}{In symplectic geometry / geometric quantum theory}\dotfill \pageref*{InSymplecticGeometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[physics]], a \emph{semiclassical state} is the approximation to a [[quantum state]] in [[semiclassical approximation]]. In the original sense of the [[WKB approximation]], in the [[Schrödinger picture]] a semiclassical state is a [[wave function]] which solves the [[Schrödinger equation]] to first order in [[Planck's constant]] $\hbar$. In the broader formalization of quantum physics in [[symplectic geometry]]/[[geometric quantization]] one finds that such WKB semiclassical states are formalized as being [[Lagrangian submanifolds]] of the given [[phase space]] [[symplectic manifold]] equipped with with a [[half-density]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We first give the traditional definition of semiclassical states according to the [[WKB method]] for a non-relativistic [[particle]] propagating on the [[Euclidean space]] $\mathbb{R}^n$ with its standard [[kinetic action]] and some arbitrary [[force]] potential \begin{itemize}% \item \hyperlink{TraditionalInSchrödingerPicture}{Of a non-relativistic particle in a potential} \end{itemize} Then we discuss the formalization of this in the broader context of [[symplectic geometry]]/[[geometric quantization]] in \begin{itemize}% \item \hyperlink{InSymplecticGeometry}{In symplectic geometry} \end{itemize} \hypertarget{TraditionalInSchrödingerPicture}{}\subsubsection*{{Semiclassical state of the non-relativistic particle in a potential}}\label{TraditionalInSchrödingerPicture} Consider the [[physical system]] given by a non-relativistic [[particle]] of [[mass]] $m$ propagating on the [[Cartesian space]] $\mathbb{R}^n$ with standard [[kinetic action]] and sunbject to a [[force]] induced by a given potential [[smooth function]] $V \colon \mathbb{R}^n \to \mathbb{R}$. \hypertarget{as_a_wave_function}{}\paragraph*{{As a wave function}}\label{as_a_wave_function} The [[Hamilton operator]] for this system is the standard \begin{displaymath} \hat H \coloneqq - \frac{\hbar^2}{2 m} \Delta + V \,, \end{displaymath} where \begin{displaymath} \Delta = \mathbf{d}^\dagger \mathbf{d} = \sum_{i = 1}^n \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^i} \end{displaymath} is the [[Laplace operator]] on $\mathbb{R}^n$ regarded as a [[Riemannian manifold]] with its canonical flat [[metric]] ($\mathbf{d}$ is the [[de Rham differential]]). Then for \begin{displaymath} \psi \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{C} \end{displaymath} a smooth 1-parameter collection of [[smooth functions]] (of [[wave functions]]), the [[Schrödinger equation]] is \begin{displaymath} i \hbar \frac{d}{ dt} \psi = \hat H \psi \,, \end{displaymath} where $\frac{d}{d t}$ is the [[differentiation]] with respect to the additional parameter ([[time]]). We say that $\psi$ is a \emph{stationary solution} to the Schr\"o{}dinger equation if it is a solution of the form \begin{displaymath} \psi(x, t) = \phi(x)\exp(- i \omega t) \end{displaymath} for some $\omega \in \mathbb{R}$. For the following it is useful to decompose the remaining [[complex number|complex]]-valued [[smooth function]] \begin{displaymath} \phi \colon \mathbb{R}^n \to \mathbb{C} \end{displaymath} into its modulus and phase by writing it as \begin{displaymath} \phi(x) = \exp(i S(x)/\hbar) a(x) \end{displaymath} for two smooth functions $S \colon \mathbb{R}^n \to \mathbb{R}$ and $a \colon \mathbb{R}^n \to \mathbb{R}_{\geq 0}$. In fact it is often useful (such as in the symplecto-geometric interpretation that we turn to \hyperlink{InSymplecticGeometry}{below}) to restrict attention to non-vanishing solutions (or else to solutions restricted to their [[support]]) in which case we can regard $\phi$ as a function of the form \begin{displaymath} \phi \colon \mathbb{R}^n \to \mathbb{C}^\times \simeq U(1) \times \mathbb{R}_{\gt 0} \end{displaymath} and then this decomposition is unique up to a global global offset of $S$ by $2\pi i \cdot n$ for $n \in \mathbb{Z}$. In terms of this decomposition the [[Schrödinger equation]] becomes \begin{displaymath} \begin{aligned} 0 &= \left(i \hbar \frac{d}{dt} - \hat H\right) \psi \\ & = \left( \left( \frac{{\vert \mathbf{d} S \vert}^2 }{2 m } + (V - \hbar \omega) \right) - \frac{i \hbar}{ 2m a} \mathbf{d}^\dagger \left(a^2 \mathbf{d} S\right) \right) \exp( i S / \hbar ) a + \mathcal{O}(\hbar^2 ) \end{aligned} \,, \end{displaymath} where $\mathbf{d} S$ is the [[gradient]] [[covector field]] of $S$, where $\mathbf{d}^\dagger ( a^2 \mathbf{d}S)$ is the [[divergence]] of $a ^2 \mathbf{d}S$, and where $\mathcal{O}(\hbar^2)$ denotes all further terms that are non-linear in $\hbar$. This means that $\psi(-,t) = \exp(i S / \hbar) a \exp(- i \omega )$ is a \textbf{semiclassical stationary state} with [[energy]] \begin{displaymath} E \coloneqq \hbar \omega \end{displaymath} if the phase $S$ and the modulus $a$ satisfy the following two conditions: \begin{enumerate}% \item The phase function $S$ satisfies the [[Hamilton-Jacobi equation]] or [[eikonal]] equation \begin{displaymath} H(x, \nabla S(x)) = \frac{\vert \mathbf{d} S\vert^2}{2 m } + V = E \,, \end{displaymath} \item The modulus $a$ is such that $a^2 \mathbf{d} S$ satisfies the homogeneous [[transport equation]] in that it is a [[divergence]]-free [[vector field]]. \end{enumerate} \hypertarget{as_a_lagrangian_submanifold_of_phase_space_equipped_with_a_halfdensity}{}\paragraph*{{As a Lagrangian submanifold of phase space equipped with a half-density}}\label{as_a_lagrangian_submanifold_of_phase_space_equipped_with_a_halfdensity} The above characterization of semiclassical [[wave functions]] of the non-relativistic particle in a potential has a natural equivalent reformulation in terms of [[symplectic geometry]]/[[geometric quantization]]. The [[phase space]] is \begin{displaymath} T^* \mathbb{R}^n \simeq \mathbb{R}^{2 n} \,. \end{displaymath} Into this space is canonically embedded as the 0-section: \begin{displaymath} 0 = (x \mapsto (x, p = 0)) \; \colon \; \mathbb{R}^n \hookrightarrow T^* \mathbb{R}^n \end{displaymath} which is a [[Lagrangian submanifold]]. Now every phase function $S \colon \mathbb{R}^n \to \mathbb{R}$ as above induces a deformation of this by regarding the [[de Rham differential]] $\mathbf{d}S$ as a [[section]] of the [[cotangent bundle]] \begin{displaymath} \mathbf{d}S \colon \mathbb{R}^n \hookrightarrow T^* X \end{displaymath} (This is what related [[phase and phase space in physics]].) This is again a [[Lagrangian submanifold]]. We write \begin{displaymath} \pi \colon im(\mathbf{d}S) \to \mathbb{R}^n \end{displaymath} for the restriction of the [[cotangent bundle]] projection to this Lagrangian submanifold. The fact that $S$ satisfies the [[Hamilton-Jacobi equation]] means equivalently that this Lagrangian submanifold is the level-set of the [[Hamiltonian]] $H \colon \mathbb{R}^n \to \mathbb{R}$ at energy $E = \hbar \omega$ \begin{displaymath} im(\mathbf{d}S) = H^{-1}(E) \,. \end{displaymath} For the interpretation of the modulus function $a$ in this reformulation, first notice that for $vol$ the canonical [[volume form]] on $\mathbb{R}^n$, the homogeneous transport equation \begin{displaymath} div( a^2 \mathbf{d}S) = 0 \end{displaymath} is equivalent to \begin{displaymath} \mathcal{L}_{\nabla S} ( a^2 vol ) = 0 \end{displaymath} where on the left we have the [[Lie derivative]] along the [[gradient]] of $S$. Next observe that \begin{displaymath} \nabla S = \pi_* (v_H)|_{im(\mathbf{d}S)} \end{displaymath} where $v_{H}$ is the [[Hamiltonian vector field]] corresponding to $H$. This means that the transport equation is equivalently \begin{displaymath} \mathcal{L}_{(v_H)} \pi^* (a^2 vol) = 0 \,. \end{displaymath} Hence this says that $\pi^* a^2 vol$ is a [[volume form]] on $im(\mathbf{d}S)$ which is invariant with respect to the Hamiltonian flow of time evolution. Finally, if instead of a [[volume form]] we choose a [[half-density]] $\sqrt{vol}$, then $a \sqrt{vol}$ is another half-density and the condition is that this be invariant under the Hamiltonian flow. In summary then, the semiclassical wave fuction is equivalently \begin{enumerate}% \item a [[Lagrangian submanifold]] \begin{itemize}% \item which is a level-set of the [[Hamiltonian]] at the given [[energy]] \end{itemize} \item such that $\mathbf{a} \coloneqq a \sqrt{vol}$ is a [[half-density]] on the Lagranian submaifold \begin{itemize}% \item which in addition is invariant under the Hamiltonian flow. \end{itemize} \end{enumerate} This formulation now suggests a more general definition of semiclassical states in [[symplectic geometry]]/[[geometric quantization]]. \hypertarget{InSymplecticGeometry}{}\subsubsection*{{In symplectic geometry / geometric quantum theory}}\label{InSymplecticGeometry} (\ldots{}) abstracting the above we have that (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include classical-to-quantum notions - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} An introduction to the formulation of semiclassical states in [[symplectic geometry]] is in the first section of \begin{itemize}% \item Sean Bates, [[Alan Weinstein]], \emph{Lectures on the geometry of quantization} (\href{http://www.math.berkeley.edu/~alanw/GofQ.pdf}{pdf}) \end{itemize} [[!redirects semiclassical states]] \end{document}