\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{semidirect product group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{interior_semidirect_products}{Interior semidirect products}\dotfill \pageref*{interior_semidirect_products} \linebreak \noindent\hyperlink{right_semidirect_products}{Right semidirect products}\dotfill \pageref*{right_semidirect_products} \linebreak \noindent\hyperlink{as_a_grothendieck_construction}{As a Grothendieck construction}\dotfill \pageref*{as_a_grothendieck_construction} \linebreak \noindent\hyperlink{semidirect_products_of_groupoids}{Semidirect products of groupoids}\dotfill \pageref*{semidirect_products_of_groupoids} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_split_group_extensions}{As split group extensions}\dotfill \pageref*{as_split_group_extensions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_automorphisms_on_the_circle_group}{The automorphisms on the circle group}\dotfill \pageref*{the_automorphisms_on_the_circle_group} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} If a [[group]] $G$ [[action|acts]] on a group $\Gamma$ (on the left, say) by group [[automorphism]] \begin{displaymath} \rho : G \to Aut(\Gamma) \,, \end{displaymath} then there is a \textbf{semidirect product} group $\Gamma \rtimes \, G$ whose underlying set is the [[Cartesian product]] $\Gamma \times G$ but whose multiplication is twisted by $\rho$: \begin{displaymath} (\delta,h)(\gamma,g)= (\delta \rho(h)(\gamma) , h g) \end{displaymath} for $\delta, \gamma \in \Gamma,\; h,g \in G$, where $^h \gamma$ denotes the result of acting with $h$ on the left on $\gamma$. If the twist is trivial, then this reduces to just the [[direct product group]] construction, whence the name. There is a [[projection]] morphism $p:\Gamma \rtimes \, G \to G$ , $(\gamma, g) \to g$. A [[section]] $s$ of this can be identified with a [[derivation]] $d$, i.e. $d$ satisfies $d(h g) = (d h) \,^h (d g)$. \hypertarget{interior_semidirect_products}{}\subsubsection*{{Interior semidirect products}}\label{interior_semidirect_products} Let $H$ be any group. A decomposition of $H$ as an \textbf{internal} semidirect product consists of a [[subgroup]] $\Gamma$ and a [[normal subgroup]] $G$, such that every element of $H$ can be written uniquely in the form $\gamma g$, for $\gamma \in \Gamma$ and $g \in G$. The internal and external concepts are equivalent. In particular, any (external) semidirect product $\Gamma \rtimes G$ is an internal semidirect product of the [[images]] of $\Gamma$ and $G$ in it. \hypertarget{right_semidirect_products}{}\subsubsection*{{Right semidirect products}}\label{right_semidirect_products} The definitions above are not symmetric in left and right; since the first definition begins with a left action, we may call it a \emph{left} semidirect product. Then a \textbf{right} semidirect product is given by an action on the right, or internally by the requirement that every element can be written in the form $g \gamma$. However, right and left semidirect products are equivalent. Essentially, this is because any left action $(h,g) \mapsto {}^h{g}$ defines a right action $(g,h) \mapsto g^h \coloneqq {}^{h^{-1}}g$ and vice versa. \hypertarget{as_a_grothendieck_construction}{}\subsubsection*{{As a Grothendieck construction}}\label{as_a_grothendieck_construction} Writing $\mathbb{B} G$ for the [[category]] with a single [[object]] $\ast$ and the [[group]] $G$ as its [[hom set]] (i.e. the [[delooping]] [[groupoid]] of $G$), define a [[functor]] $F \colon \mathbb{B}G \to$ [[Cat]] to send that single object to the delooping groupoid of $\Gamma$, i.e. $* \mapsto \mathbb{B}\Gamma$ and to send the morphisms $G \to Aut(\Gamma)$ according to the given [[action]] of $G$ on $\Gamma$. Then the delooping of the semidirect product group $\Gamma \rtimes G$ arises as the [[Grothendieck construction]] of this functor: \begin{displaymath} \mathbb{B}( \Gamma \rtimes G) \;\simeq\; \int_{\mathbb{B}G}F \end{displaymath} \hypertarget{semidirect_products_of_groupoids}{}\subsubsection*{{Semidirect products of groupoids}}\label{semidirect_products_of_groupoids} It is useful to generalise this to the case $\Gamma$ is a [[groupoid]]. This occurs if for example $\Gamma = \pi_1 X$ where $X$ is a (left) $G$-space. So if $X=Ob(\Gamma)$, then $\Gamma \rtimes \, G$ has object set $X$ and a morphism $y \to x$ is a pair $(\gamma,g)$ such that $\gamma: y \to g x$ in $\Gamma$. The composition law is then given again by \begin{displaymath} (\delta,h)(\gamma,g)= (\delta \, ^h \gamma, h g) \end{displaymath} if $(\delta, h): z \to y$, so that $\delta: z \to h y$ in $\Gamma$. If $\Gamma$ is a discrete groupoid, and so identified with $X$, then we get $X \rtimes \, G$ which is the [[action groupoid]] of the action. In this case the projection $p: X \rtimes \, G \to G$ is a covering morphism of groupoids, i.e. any $g \in G$ has a unique lifting with given initial point. Note that if $Y \to X$ is a covering map of spaces, then the induced morphism of fundamental groupoids is a covering morphism of groupoids. If $q: H \to \pi_1 X$ is a covering morphism of groupoids, and $X$ admits a universal covering map, then there is a topology on $Y=Ob(H)$ such that $H \cong \pi_1 Y$. In this way, the category of covering maps of $X$ is equivalent to the category of covering morphisms of $\pi_1 X$. The utility of the more general construction is that there is notion of orbit groupoid $\Gamma //G$ (identify any $\gamma$ and $^g \gamma$) and it is a theorem that the orbit groupoid is isomorphic to the quotient groupoid \begin{displaymath} (\Gamma \rtimes \, G)/N \end{displaymath} where $N$ is the [[normal closure]] in $\Gamma \rtimes \, G$ of all elements $(1_x,g)$. Details are in the book reference below (but the conventions are not quite the same). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_split_group_extensions}{}\subsubsection*{{As split group extensions}}\label{as_split_group_extensions} Semidirect product groups $A \rtimes_\rho G$ are precisely the split [[group extensions]] of $G$ by $A$. See at \emph{\href{group+extension#SplitExtensionsAndSemidirectProductGroups}{group extension -- split extensions and semidirect product groups}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{the_automorphisms_on_the_circle_group}{}\subsubsection*{{The automorphisms on the circle group}}\label{the_automorphisms_on_the_circle_group} For $U(1) = \mathbb{R}/\mathbb{Z}$ the [[circle group]], the [[automorphism group]] is \begin{displaymath} Aut(U(1)) \simeq \mathbb{Z}_2 \,, \end{displaymath} where the nontrivial element in $\mathbb{Z}_2$ acts on $\mathbb{R}$ by multiplication with $-1$. Write $\rho_{aut} : U(1) \times \mathbb{Z}_2 \to U(1)$ for the automorphism [[action]]. The corresponding semidirect product group is the [[group extension]] \begin{displaymath} U(1) \stackrel{}{\hookrightarrow} U(1) \rtimes_{\rho_{aut}} \mathbb{Z}_2 \to \mathbb{Z}_2 \end{displaymath} where the group operation is given by \begin{displaymath} (c_1 \; mod \; \mathbb{Z}, \sigma_1) \cdot (c_2\; mod \; \mathbb{Z}, \sigma_2) = (c_1 + \sigma_1(c_2) \; mod \; \mathbb{Z}, \sigma_1 + \sigma_2) \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semidirect product Lie algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A general survey is in \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Semi-direct_product}{Semidirect product}} \end{itemize} Lecture notes include \begin{itemize}% \item Patrick Morandi, \emph{Semidirect products} (\href{http://sierra.nmsu.edu/morandi/notes/semidirect.pdf}{pdf}) \end{itemize} Relevant textbooks include \begin{itemize}% \item [[R. Brown]], \emph{Topology and groupoids}, Booksurge 2006. \item [[P. J. Higgins]] and J. Taylor, \emph{The Fundamental Groupoid and Homotopy Crossed Complex of an Orbit Space}, in K.H. Kamps et al., ed., Category Theory: Proceedings Gummersbach 1981, Springer LNM 962 (1982) 115--122. \end{itemize} [[!redirects semidirect product groups]] \end{document}