\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{separator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{separators}{}\section*{{Separators}}\label{separators} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Terminology}{Caution on terminology}\dotfill \pageref*{Terminology} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{fibered}{In fibered categories}\dotfill \pageref*{fibered} \linebreak \noindent\hyperlink{examples_and_applications}{Examples and applications}\dotfill \pageref*{examples_and_applications} \linebreak \noindent\hyperlink{strengthened_separators}{Strengthened separators}\dotfill \pageref*{strengthened_separators} \linebreak \noindent\hyperlink{dense_separators}{Dense separators}\dotfill \pageref*{dense_separators} \linebreak \noindent\hyperlink{girauds_axioms}{Giraud's axioms}\dotfill \pageref*{girauds_axioms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An [[object]] $S$ (or family $\mathcal{S}$ of objects) in a [[category]] $\mathcal{C}$ is called a \emph{separator} or \emph{generator} if [[generalized elements]] with [[domain]] $S$ (or domain from $\mathcal{S}$) are sufficient to distinguish [[morphisms]] in $\mathcal{C}$. The [[duality|dual]] notion is that of a \emph{[[coseparator]]}. \hypertarget{Terminology}{}\subsection*{{Caution on terminology}}\label{Terminology} The term `generator' is slightly more ambiguous because of the use of `generators' in [[generators and relations]]. That said, there is a link between these two senses provided by theorem \ref{motive} (q.v.). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{}\hypertarget{}{} An [[object]] $S \in \mathcal{C}$ of a [[category]] $\mathcal{C}$ is called a \textbf{separator} or a \textbf{generator} or a \textbf{separating object} or a \textbf{generating object}, or is said to \textbf{separate morphisms} if: \begin{itemize}% \item for every pair of [[parallel morphisms]] $f,g \colon X \to Y$ in $\mathcal{C}$, if $f\circ e = g\circ e$ for every morphism $e\colon S \to X$, then $f = g$. \end{itemize} \end{defn} Assuming that $\mathcal{C}$ is [[locally small|locally small category]], we have equivalently that $S$ is a separator if the [[hom functor]] $Hom(S,-) \colon \mathcal{C} \to$ [[Set]] is [[faithful functor|faithful]]. More generally: \begin{defn} \label{}\hypertarget{}{} A [[family]] $\mathcal{S} = (S_a)_{(a\colon A)}$ of [[objects]] of a [[category]] $\mathcal{C}$ is a \textbf{separating family} or a \textbf{generating family} if: \begin{itemize}% \item for every pair of [[parallel morphisms]] $f,g \colon X \to Y$ in $\mathcal{C}$, if $f \circ e = g \circ e$ for every $e \colon S_a \to X$ sourced in the family, then $f = g$. \end{itemize} \end{defn} Assuming again that $\mathcal{C}$ is [[locally small category|locally small]], we have equivalently that $\mathcal{S}$ is a separating family if the family of [[hom functors]] $Hom(U_a,-) \colon \mathcal{C} \to$ [[Set]] is [[jointly faithful family of functors|jointly faithful]]. Since repetition is irrelevant in a separating family, we may also speak of a \emph{separating [[class]]} instead of a separating family. \begin{defn} \label{}\hypertarget{}{} A \textbf{separating set} is a [[size issues|small]] separating class. \end{defn} \hypertarget{fibered}{}\subsubsection*{{In fibered categories}}\label{fibered} The notion of separating family can be generalized from categories to [[fibered categories]] in such a way that the [[family fibration]] of a category $\mathbf{C}$ has a separating family if and only if $\mathbf{C}$ has a small separating family. \begin{defn} \label{}\hypertarget{}{} A separating family in a [[fibered category]] $P:\mathbf{E}\to \mathbf{B}$ is an object $S\in \mathbf{E}$ such that for every parallel pair $f,g:A\to B$ in $E$ with $f\neq g$ and $P(f) = P(g)$ there exist arrows $c: X\to S$ and $h:X\to A$ (constituting a span) such that $c$ is $P$-cartesian, and $f h \neq g h$ . \end{defn} See Definition B2.4.1 in the [[Elephant]]. \hypertarget{examples_and_applications}{}\subsection*{{Examples and applications}}\label{examples_and_applications} \begin{itemize}% \item In [[Set]], any [[inhabited set]] is a separator; in particular, the [[point]] is a separator. \item More generally, in any [[well-pointed category]], any [[terminal object]] is a separator. More generally still, in any represented [[concrete category]], the representing object is a separator. \item The standard example of a separator in the category of $R$-[[modules]] over a [[ring]] $R$ is any [[free module]] $R^I$ (for $I$ an [[inhabited set]]) and $R$ (which is $R^I$ for $I$ a [[point]]) in particular. If a separator is a finitely generated [[projective object]] in the category of $R$-modules, then one sometimes says (especially in the older literature, e.g. Freyd's \emph{Abelian Categories}) that the separator is a \emph{progenerator}. Progenerators are important in classical Morita theory, see [[Morita equivalence]]. \item The existence of a small separating family is one of the conditions in [[Giraud's theorem]] characterizing [[Grothendieck topos]]es. \item The existence of a small (co)separating family is one of the conditions in one version of the [[adjoint functor theorem]]. \end{itemize} \hypertarget{strengthened_separators}{}\subsection*{{Strengthened separators}}\label{strengthened_separators} \begin{theorem} \label{motive}\hypertarget{motive}{} If $C$ is [[locally small category|locally small]] and has all small [[coproduct]]s, then a set-indexed family $(S_a)_{(a\colon A)}$ is separating if and only if, for every $X\in C$, the canonical morphism \begin{displaymath} \varepsilon_X\colon \coprod_{a\colon A, f\colon S_a \to X} S_a \longrightarrow X \end{displaymath} is an [[epimorphism]]. \end{theorem} This theorem explains a likely origin of the term ``generator'' or ``generating family''. For example, in linear algebra, one says that a set of morphisms $f_a: S_a \to X$ spans or generates $X$ if the induced map $\oplus S_a \to X$ maps epimorphically onto $X$. More generally: \begin{defn} \label{}\hypertarget{}{} If $\mathcal{E}$ is a subclass of epimorphisms, we say that $(S_a)_{(a\colon A)}$ is an \emph{$\mathcal{E}$-separator} or \textbf{$\mathcal{E}$-generator} if each morphism $\varepsilon_X$ (as above) is in $\mathcal{E}$. \end{defn} The weakest commonly-seen strengthened notion is that of \textbf{extremal separator}, i.e. separator where all maps $\varepsilon_X$ are [[extremal epimorphisms]]. The notion of extremal separator admits an equivalent reformulation not referencing coproducts: \begin{prop} \label{Extremal}\hypertarget{Extremal}{} If $C$ is [[locally small category|locally small]] and has all small [[coproduct]]s, then a set-indexed family $(S_i)_{(i\colon I)}$ is an extremal separator if and only if the functors $C(S_i,-):C\to\mathrm{Set}$ are jointly faithful and jointly [[conservative functor|conservative]]. \end{prop} \begin{proof} Assume first that the family $(S_i)_{(i\colon I)}$ is an extremal separator. The functors $C(S_i,-):C\to\mathrm{Set}$ are jointly faithful for every separator. To see that they are also jointly conservative, let $f:A\to B$ such that all $C(S_i,f)$ are bijective. Then $\varepsilon_B$ factors through $f$ since all its components do, which implies that $f$ is an extremal epi since $\varepsilon_B$ is one by assumption. It remains to show that $f$ is a monomorphism. For this, let $u,v:X\to A$ such that $f u = f v$. Then we have $f u h = f v h$ for all $i\in I$ and $h:S_i\to X$, which implies $u h = v h$ since the $C(S_i,f)$ are bijective, and we conclude that $u=v$ since $(S_i)_{(i\colon I)}$ is separating. Conversely, assume that the functors $C(S_i,-)$ are jointly faithful and jointly conservative. Given $A\in C$, joint faithfulness implies that $\varepsilon_A$ is epic. To see that it is extremally so, assume a factorization $\varepsilon_A = m g$ with $m$ monic. We have to show that $m$ is an isomorphism, and for this it is sufficient to show that all $C(S_i,m)$ are bijections. Injectivity is clear since $m$ is monic, and surjectivity follows since every $h:S_i\to A$ factors through $\varepsilon_A$. \end{proof} The concepts ``strong separator'' and ``regular separator'' corresponding to the notions of [[strong epimorphism]] and [[regular epimorphism]] do not admit such a reformulation, but the following result shows that they are equivalent to extremal separators in reasonable categories. \begin{prop} \label{}\hypertarget{}{} Assume that $C$ is [[locally small category|locally small]] and has all small [[coproduct]]s. \begin{enumerate}% \item If $C$ is balanced, then every separator is extremal. \item If $C$ has pullbacks, then every extremal separator is strong. \item If $C$ is [[regular category|regular]], then every strong separator is regular. \end{enumerate} The converse implications do always hold. \end{prop} \begin{proof} This is a direct consequence of the facts that \begin{enumerate}% \item in a balanced category every epi is extremal, \item in a category with pullbacks, every extremal epi is strong, and \item in a regular category every strong epi is regular. \end{enumerate} \end{proof} \begin{uremark} \begin{enumerate}% \item Proposition \ref{Extremal} gives rise to a notion of extremal separator that makes sense independently of the existence of coproducts. In fact claim 1 of the preceding result holds in this more general setting, since every faithful functor out of a balanced category is conservative. \item Most of the literature uses the term ``strong separator'' (or strong generator) for what we call an extremal separator. \hyperlink{AdamekRosicky}{Adamek and Rosicky (Section 0.6)} also comment on this mismatch, writing ``It would be more reasonable, but unfortunately less standard, to call a strong generator an extremal generator''. However, item 2 of the preceding result shows that this discrepancy disappears and the terms coincide in presence of pullbacks (and coproducts). \item In the Elephant, Johnstone uses ``separator'' in the same sense as we do, and writes ``generator'' for extremal separators, in the more general sense not assuming coproducts. Since he always assumes finite limits, he can use a simplified criterion only requiring joint conservativity of the hom-functors (since a conservative functor $F:C\to D$ is automatically faithful whenever $C$ has equalizers and $F$ preserves them). \end{enumerate} \end{uremark} \hypertarget{dense_separators}{}\subsubsection*{{Dense separators}}\label{dense_separators} Finally, the strongest kind of separator commonly seen is that of \textbf{dense separator}. \begin{defn} \label{}\hypertarget{}{} A \textbf{dense separator} in a category $C$ is a family $(S_i)_{(i\colon I)}$ of objects such that the generated full subcategory is [[dense subcategory|dense]]. \end{defn} Every dense separator is an extremal separator, and it is also strong and regular whenever those words make sense, i.e. $C$ is locally small and has small coproducts. If $C$ furthermore has pullbacks and the coproducts are pullback-stable, then every regular separator is dense (see \hyperlink{Borceux}{Borceux I, Proposition 4.5.6}). To see that the pullback-stability condition is necessary, consider the category of abelian groups. Here, the free group on one generator is a regular, but not a dense separator. \hypertarget{girauds_axioms}{}\subsubsection*{{Giraud's axioms}}\label{girauds_axioms} [[Grothendieck topos\#Giraud|Giraud's axioms]] characterize Grothendieck toposes as locally small regular categories with effective equivalence relations and disjoint and pullback-stable coproducts admitting a small separator. The previously stated and cited results show that in fact every such separator is dense (the effectivity and disjointness assumptions don't play a role for this conclusion). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[coseparator]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Francis Borceux]], \emph{Handbook of Categorical Algebra I}, Cambridge University Press, 1994 \item [[Jiří Adámek]] and [[Jiří Rosicky]], Locally presentable and accessible categories, Cambridge University Press \end{itemize} [[!redirects separator]] [[!redirects separators]] [[!redirects separating family]] [[!redirects separating families]] [[!redirects generating family]] [[!redirects generating families]] [[!redirects separating class]] [[!redirects separating classes]] [[!redirects generating class]] [[!redirects generating classes]] [[!redirects separating set]] [[!redirects separating sets]] [[!redirects generating set]] [[!redirects generating sets]] [[!redirects strong separator]] [[!redirects strong separators]] [[!redirects strong generator]] [[!redirects strong generators]] [[!redirects strong separating set]] [[!redirects strong separating sets]] [[!redirects strong generating set]] [[!redirects strong generating sets]] [[!redirects dense separator]] [[!redirects dense separators]] [[!redirects dense generator]] [[!redirects dense generators]] \end{document}