\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sequence space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{sequence_spaces}{}\section*{{Sequence spaces}}\label{sequence_spaces} \noindent\hyperlink{sequence_spaces_2}{Sequence spaces}\dotfill \pageref*{sequence_spaces_2} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Generalisations}{Generalisations}\dotfill \pageref*{Generalisations} \linebreak \noindent\hyperlink{in_constructive_mathematics}{In constructive mathematics}\dotfill \pageref*{in_constructive_mathematics} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{sequence_spaces_2}{}\subsection*{{Sequence spaces}}\label{sequence_spaces_2} A classical \emph{sequence space} is a [[vector space]] of [[sequences]] of [[real numbers]], equipped with a [[p-norm]] that makes it a [[normed vector space]]. More generally one may consider spaces of functions on any set. Specific sequence spaces are usually known through their symbolic names, such as `$c_0$' and `$l^p$', that appear below. The term `sequence space' is useful as a general name without symbols in it. The sequences spaces are basic examples of [[topological vector spaces]]. They all have a discrete flavour that (maybe) makes them easy to understand, but they are not actually [[discrete spaces]]. The generalization of sequences space to spaces of functions on more general [[measure spaces]] are the \emph{[[Lebesgue spaces]]}. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Fix a [[set]] $N$; typically, $N$ is the set $\mathbb{N}$ of [[natural numbers]], but this is not necessary for the basic concepts. Sometimes one uses the set $\mathbb{Z}$ of [[integers]] (which is the [[underlying set]] of an [[abelian group]], useful for some purposes), which of course is [[bijective]] with $\mathbb{N}$. For the simplest examples, let $N$ be a [[finite set]]. Also fix a [[topological vector space]] $K$; typically, $K$ is either the space $\mathbb{C}$ of [[complex numbers]] or the space $\mathbb{R}$ of [[real numbers]]. We will assume below that $K$ is at least a [[Banach space]]; but since much of the point of the sequence spaces is to be simple examples of Banach spaces, you probably want something familiar as $K$. We will think of a [[function]] from $N$ to $K$ as a \textbf{$K$-valued $N$-sequence}, or simply a \textbf{sequence}. The various sequence spaces will be [[subsets]] of the [[function set]] $K^N$ of all sequences. In general, if `$X$' is the symbol for a sequence space, then we may specify $N$ and $K$ by writing `$X(N,K)$' (or a variation thereon), but often this is suppressed. \begin{defn} \label{}\hypertarget{}{} $l^1$ is the space of \textbf{absolutely summable sequences}: \begin{displaymath} \sum_k {|a_k|} \lt \infty . \end{displaymath} We equip $l^1$ with the \textbf{$l^1$-norm} \begin{displaymath} {\|a\|_1} \coloneqq \sum_k {|a_k|} . \end{displaymath} \end{defn} This is a [[Banach space]]. \begin{defn} \label{}\hypertarget{}{} $l^2$ is the space of \textbf{absolutely square-summable sequences} (or, over a [[real field]], simply \emph{square-summable sequences}): \begin{displaymath} \sum_k {|a_k|^2} \lt \infty . \end{displaymath} We equip $l^2$ with the \textbf{$l^2$-norm} \begin{displaymath} {\|a\|_2} \coloneqq \sqrt{\sum_k {|a_k|^2}} . \end{displaymath} \end{defn} This is also a Banach space; in fact, it's a [[Hilbert space]] (assuming that $K$ is). Furthermore, \emph{every} Hilbert space (over $K$ a [[field]]) arises in this way, up to [[isometric isomorphism]], using an [[orthonormal basis]] for $N$. More generally, for $0 \lt p \lt \infty$: \begin{defn} \label{}\hypertarget{}{} $l^p$ is the space of \textbf{absolutely $p$th-power--summable sequences}: \begin{displaymath} \sum_k {|a_k|^p} \lt \infty . \end{displaymath} We equip $l^p$ with the \textbf{$l^p$-norm} \begin{displaymath} {\|a\|_p} \coloneqq \sqrt[p]{\sum_k {|a_k|^p}} . \end{displaymath} \end{defn} This is at least an $F$-[[F-space|space]], which is a Banach space iff $p \geq 1$. (For $p \lt 1$, the `norm' is not really a norm in the sense of a [[normed vector space]].) \begin{defn} \label{}\hypertarget{}{} $l^\infty$ is the space of \textbf{absolutely bounded sequences}: \begin{displaymath} \sup_k {|a_k|} \lt \infty . \end{displaymath} We equip $l^\infty$ with the \textbf{supremum norm}: \begin{displaymath} {\|a\|_\infty} \coloneqq \sup_k {|a_k|} . \end{displaymath} \end{defn} This is also a Banach space. \begin{defn} \label{}\hypertarget{}{} $c_c$ (or $c_{00}$) is the space of \textbf{almost-zero sequences}: \begin{displaymath} \ess\forall k,\; a_k = 0 , \end{displaymath} where `$\ess\forall$' means `for all but finitely many' ($\tilde{K}$-[[K-finite|finite]] in [[constructive mathematics]]). We equip $c_c$ with the topology of [[compact convergence]] (here, convergence on finite subsets). \end{defn} This is a [[locally convex space]]. \begin{defn} \label{}\hypertarget{}{} $c_0$ is the space of \textbf{zero-limit sequences}: \begin{displaymath} \forall \epsilon,\; \ess\forall k,\; {|a_k|} \lt \epsilon , \end{displaymath} where as usual $\epsilon$ is a [[positive number]] and again `$\ess\forall$' means `for all but finitely many'. We equip $c_0$ with the [[supremum norm]]. \end{defn} This is also a locally convex space, in fact a [[Banach space]]. \begin{defn} \label{}\hypertarget{}{} $c_\infty$ is the space of \textbf{convergent sequences}: \begin{displaymath} \exists L,\; \forall \epsilon,\; \ess\forall k,\; {|a_k - L|} \lt \epsilon , \end{displaymath} where $L$ is an element of $K$ and the other notation is as in $c_0$ above. We also equip $c_\infty$ with the supremum norm. \end{defn} This is also a [[Banach space]]. $c_\infty$ is also written simply `$c$', but this can be confusing; see the \hyperlink{Generalisations}{Generalisations} below. There is some argument to be made that an element of $c_\infty$ should be a sequence with the [[extra structure]] of a specific limit $L$, rather than a sequence with the [[extra property]] that some limit exists. This makes no difference if $N$ is [[infinite set|infinite]]; but if $N$ is finite then the version of $c_\infty$ with extra structure is the $l^\infty$-[[l-infinity-direct sum|direct sum]] of the [[ground field]] and the version of $c_\infty$ with extra property. \begin{defn} \label{}\hypertarget{}{} $c_b$ is the space of \textbf{absolutely bounded sequences}: \begin{displaymath} \sup_k {|a_k|} \lt \infty . \end{displaymath} We equip $c_b$ with the supremum norm too. \end{defn} This is yet another [[Banach space]]. Indeed, $c_b = l^\infty$, two different ways of thinking about the same thing. (But they generalise differently.) \begin{defn} \label{}\hypertarget{}{} Finally, $N^K$ is the space of all sequences. We equip $N^K$ with the [[product topology]], also called the topology of [[pointwise convergence]]. \end{defn} This should probably be denoted `$c$', in line with the \hyperlink{Generalisations}{generalisation} below; but that symbol is often used for $c_\infty$, so it would be confusing. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} These properties all use the version of $c_\infty$ with extra property. For $0 \lt p \lt q \lt \infty$, we have $c_c \subseteq l^p \subseteq l^q \subseteq c_0$, with each space [[dense subspace|dense]] in the next (using the topology of the next). This continues: $c_0 \subseteq c_\infty \subseteq c_b = l^\infty$, but now each space, far from being dense, is a [[closed subspace]] of the next (with the [[induced topology]]). Finally, $l^\infty = c_b \subseteq K^N$ When $N$ is [[finite set|finite]], these spaces are all the same, being just the [[cartesian spaces]] $K^N$; when $N$ is [[infinite set|infinite]], the inclusions above are all proper (at least if $K$ is nontrivial). The various [[direct sums of Banach spaces]] follow the sequence spaces $l^p$ for $1 \leq p \leq \infty$. The [[Riesz representation theorems]] give many nice results for the [[dual vector space|dual spaces]] of the sequence spaces: \begin{itemize}% \item the dual of $c_0$ is $l^1$, \item the dual of $l^p$ is $l^q$ for $p + q = p q$ and $1 \lt p , q \lt \infty$, \item the dual of $l^1$ is $l^\infty$, \item the dual of $l^\infty$ is $l^1$ in [[dream mathematics]], but something much larger in [[classical mathematics]]. \end{itemize} \hypertarget{Generalisations}{}\subsection*{{Generalisations}}\label{Generalisations} The sequence spaces $l^p$ generalise to the [[Lebesgue spaces]] $L^p$ on arbitrary [[measure spaces]]. In fact, $l^p(N)$ is simply $L^p(N,\mu)$, where $\mu$ is [[counting measure]]. The sequence spaces $c_c$, $c_0$, $c_\infty$, $c_b$, and $K^N$ generalise to the spaces $C_c$, $C_0$, $C_\infty$, $C_b$, and $C$ of [[continuous maps]] on a [[local compactum]]. In fact, $c_*(N)$ is simply $C_*(N,\tau)$, where $\tau$ is the [[discrete topology]]. (Note that one never uses the symbol `$C$' for `$C_\infty$' with capital letters.) A common setting for both of these generalisations is a (locally compact Hausdorff) [[topological group]]. While $l^\infty$ and $c_b$ are the same, $L^\infty$ and $C_b$ are the same \emph{only} if the group is discrete. (Otherwise $C_b \subset L^\infty$ properly.) \hypertarget{in_constructive_mathematics}{}\subsection*{{In constructive mathematics}}\label{in_constructive_mathematics} The spaces $c_c$, $c_0$, and $c_\infty$ work just fine in [[constructive mathematics]] (as does $K^N$, since it has no interesting structure anyway). For $l^p$, we need $N$ to have [[decidable equality]] to define $\|a\|_p$; even so, $\|a\|_p$ (even when bounded) is only a [[lower real number]], so we usually require it be [[located real number|located]] to have an element of $l^p$. With these caveats, $l^p$ works just fine for $0 \lt p \lt \infty$. For $c_b = l^\infty$, we cannot get a [[Banach space]] with [[located real number|located]] [[norms]], as is usually required for constructive [[functional analysis]] \ldots{} well, unless we require $N$ to be [[finite set|finite]] (in the strictest sense), which leaves out the motivating example. Nevertheless, we can still treat $l^\infty$ as a \emph{semicontinuous} Banach space, that is one where the norms may be any bounded [[lower reals]]; for that matter, we can also consider semicontinuous versions of $l^p$. (Another way to treat $l^\infty$ may be formally, as the [[dual vector space|dual]] of $l^1$; I don't know how well this works.) \hypertarget{references}{}\subsection*{{References}}\label{references} At least for the term `sequence space', try \href{https://en.wikipedia.org/wiki/Sequence_space}{Wikipedia} and \emph{[[HAF]]}. [[!redirects sequence space]] [[!redirects sequence spaces]] [[!redirects l1-space]] [[!redirects l1-spaces]] [[!redirects l-1-space]] [[!redirects l-1-spaces]] [[!redirects l{\tt \symbol{94}}1-space]] [[!redirects l{\tt \symbol{94}}1-spaces]] [[!redirects l\_1-space]] [[!redirects l\_1-spaces]] [[!redirects l1 space]] [[!redirects l1 spaces]] [[!redirects l-1 space]] [[!redirects l-1 spaces]] [[!redirects l{\tt \symbol{94}}1 space]] [[!redirects l{\tt \symbol{94}}1 spaces]] [[!redirects l\_1 space]] [[!redirects l\_1 spaces]] [[!redirects lp-space]] [[!redirects lp-spaces]] [[!redirects l-p-space]] [[!redirects l-p-spaces]] [[!redirects l{\tt \symbol{94}}p-space]] [[!redirects l{\tt \symbol{94}}p-spaces]] [[!redirects l\_p-space]] [[!redirects l\_p-spaces]] [[!redirects lp space]] [[!redirects lp spaces]] [[!redirects l-p space]] [[!redirects l-p spaces]] [[!redirects l{\tt \symbol{94}}p space]] [[!redirects l{\tt \symbol{94}}p spaces]] [[!redirects l\_p space]] [[!redirects l\_p spaces]] [[!redirects linfty-space]] [[!redirects linfty-spaces]] [[!redirects l-infty-space]] [[!redirects l-infty-spaces]] [[!redirects l{\tt \symbol{94}}infty-space]] [[!redirects l{\tt \symbol{94}}infty-spaces]] [[!redirects l\_infty-space]] [[!redirects l\_infty-spaces]] [[!redirects linfty space]] [[!redirects linfty spaces]] [[!redirects l-infty space]] [[!redirects l-infty spaces]] [[!redirects l{\tt \symbol{94}}infty space]] [[!redirects l{\tt \symbol{94}}infty spaces]] [[!redirects l\_infty space]] [[!redirects l\_infty spaces]] [[!redirects linfin-space]] [[!redirects linfin-spaces]] [[!redirects l-infin-space]] [[!redirects l-infin-spaces]] [[!redirects l{\tt \symbol{94}}infin-space]] [[!redirects l{\tt \symbol{94}}infin-spaces]] [[!redirects l\_infin-space]] [[!redirects l\_infin-spaces]] [[!redirects linfin space]] [[!redirects linfin spaces]] [[!redirects l-infin space]] [[!redirects l-infin spaces]] [[!redirects l{\tt \symbol{94}}infin space]] [[!redirects l{\tt \symbol{94}}infin spaces]] [[!redirects l\_infin space]] [[!redirects l\_infin spaces]] [[!redirects linfinity-space]] [[!redirects linfinity-spaces]] [[!redirects l-infinity-space]] [[!redirects l-infinity-spaces]] [[!redirects l{\tt \symbol{94}}infinity-space]] [[!redirects l{\tt \symbol{94}}infinity-spaces]] [[!redirects l\_infinity-space]] [[!redirects l\_infinity-spaces]] [[!redirects linfinity space]] [[!redirects linfinity spaces]] [[!redirects l-infinity space]] [[!redirects l-infinity spaces]] [[!redirects l{\tt \symbol{94}}infinity space]] [[!redirects l{\tt \symbol{94}}infinity spaces]] [[!redirects l\_infinity space]] [[!redirects l\_infinity spaces]] [[!redirects l∞-space]] [[!redirects l∞-spaces]] [[!redirects l-∞-space]] [[!redirects l-∞-spaces]] [[!redirects l{\tt \symbol{94}}∞-space]] [[!redirects l{\tt \symbol{94}}∞-spaces]] [[!redirects l\_∞-space]] [[!redirects l\_∞-spaces]] [[!redirects l? space]] [[!redirects l? spaces]] [[!redirects l-∞ space]] [[!redirects l-∞ spaces]] [[!redirects l{\tt \symbol{94}}? space]] [[!redirects l{\tt \symbol{94}}? spaces]] [[!redirects l\_? space]] [[!redirects l\_? spaces]] [[!redirects cc-space]] [[!redirects cc-spaces]] [[!redirects c-c-space]] [[!redirects c-c-spaces]] [[!redirects c\_c-space]] [[!redirects c\_c-spaces]] [[!redirects cc space]] [[!redirects cc spaces]] [[!redirects c-c space]] [[!redirects c-c spaces]] [[!redirects c\_c space]] [[!redirects c\_c spaces]] [[!redirects c00-space]] [[!redirects c00-spaces]] [[!redirects c-00-space]] [[!redirects c-00-spaces]] [[!redirects c\_00-space]] [[!redirects c\_00-spaces]] [[!redirects c00 space]] [[!redirects c00 spaces]] [[!redirects c-00 space]] [[!redirects c-00 spaces]] [[!redirects c\_00 space]] [[!redirects c\_00 spaces]] [[!redirects c0-space]] [[!redirects c0-spaces]] [[!redirects c-0-space]] [[!redirects c-0-spaces]] [[!redirects c\_0-space]] [[!redirects c\_0-spaces]] [[!redirects c0 space]] [[!redirects c0 spaces]] [[!redirects c-0 space]] [[!redirects c-0 spaces]] [[!redirects c\_0 space]] [[!redirects c\_0 spaces]] [[!redirects cinfinity-space]] [[!redirects cinfinity-spaces]] [[!redirects c-infinity-space]] [[!redirects c-infinity-spaces]] [[!redirects c\_infinity-space]] [[!redirects c\_infinity-spaces]] [[!redirects cinfinity space]] [[!redirects cinfinity spaces]] [[!redirects c-infinity space]] [[!redirects c-infinity spaces]] [[!redirects c\_infinity space]] [[!redirects c\_infinity spaces]] [[!redirects cinfin-space]] [[!redirects cinfin-spaces]] [[!redirects c-infin-space]] [[!redirects c-infin-spaces]] [[!redirects c\_infin-space]] [[!redirects c\_infin-spaces]] [[!redirects cinfin space]] [[!redirects cinfin spaces]] [[!redirects c-infin space]] [[!redirects c-infin spaces]] [[!redirects c\_infin space]] [[!redirects c\_infin spaces]] [[!redirects cinfty-space]] [[!redirects cinfty-spaces]] [[!redirects c-infty-space]] [[!redirects c-infty-spaces]] [[!redirects c\_infty-space]] [[!redirects c\_infty-spaces]] [[!redirects cinfty space]] [[!redirects cinfty spaces]] [[!redirects c-infty space]] [[!redirects c-infty spaces]] [[!redirects c\_infty space]] [[!redirects c\_infty spaces]] [[!redirects c∞-space]] [[!redirects c∞-spaces]] [[!redirects c-∞-space]] [[!redirects c-∞-spaces]] [[!redirects c\_∞-space]] [[!redirects c\_∞-spaces]] [[!redirects c? space]] [[!redirects c? spaces]] [[!redirects c-∞ space]] [[!redirects c-∞ spaces]] [[!redirects c\_? space]] [[!redirects c\_? spaces]] [[!redirects cb-space]] [[!redirects cb-spaces]] [[!redirects c-b-space]] [[!redirects c-b-spaces]] [[!redirects c\_b-space]] [[!redirects c\_b-spaces]] [[!redirects cb space]] [[!redirects cb spaces]] [[!redirects c-b space]] [[!redirects c-b spaces]] [[!redirects c\_b space]] [[!redirects c\_b spaces]] [[!redirects c-space]] [[!redirects c-spaces]] [[!redirects c space]] [[!redirects c spaces]] \end{document}