\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sequential spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{AsDiagramSpectra}{As diagram spectra}\dotfill \pageref*{AsDiagramSpectra} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{limits_and_colimits}{Limits and colimits}\dotfill \pageref*{limits_and_colimits} \linebreak \noindent\hyperlink{tensoring_and_powering_over_pointed_spaces}{Tensoring and powering over pointed spaces}\dotfill \pageref*{tensoring_and_powering_over_pointed_spaces} \linebreak \noindent\hyperlink{ModelCategoryStructures}{Model category structures}\dotfill \pageref*{ModelCategoryStructures} \linebreak \noindent\hyperlink{SuspensionAndLooping}{Suspension and looping}\dotfill \pageref*{SuspensionAndLooping} \linebreak \noindent\hyperlink{relation_to_excisive_functors}{Relation to excisive functors}\dotfill \pageref*{relation_to_excisive_functors} \linebreak \noindent\hyperlink{SmashProduct}{Smash product}\dotfill \pageref*{SmashProduct} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[stable homotopy theory]], a \emph{sequential ([[prespectrum|pre-]])[[spectrum]]} $E$ (also \emph{Boardman spectrum}, after (\hyperlink{Boardman65}{Boardman 65})) is a sequence of [[pointed homotopy types]] ([[pointed topological spaces]], pointed [[simplicial sets]]) $E_n$, for $n \in \mathbb{N}$, together with maps $\Sigma E_n \to E_{n+1}$ from the [[reduced suspension]] of one into the next space in the sequence. This is the original definition of \emph{[[spectrum]]} (or pre-spectrum) and still the one predominently meant be default, as used in, say, the [[Brown representability theorem]]. But in view of many other definitions (all giving rise to equivalent [[stable homotopy theory]]) that involve systems of spaces indexed on more than just the integers (such as [[coordinate-free spectra]], [[excisive functors]], [[equivariant spectra]]) or that are of different flavor altogether (such as [[combinatorial spectra]]), one says \emph{sequential spectrum} for emphasis (e.g. \hyperlink{Schwede12}{Schwede 12, def. 2.1}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} In what follows, [[sSet]] denotes the [[category]] of [[simplicial sets]] and $sSet^{\ast/}$ the category $\ast/sSet$ of [[pointed objects|pointed]] simplicial sets (the [[undercategory]] under the [[terminal object]] $\ast$), which may be thought of as a possible base of [[enriched category|enrichment]]. \begin{defn} \label{SequentialSpectra}\hypertarget{SequentialSpectra}{} A \emph{sequential} [[pre-spectrum]] in [[simplicial sets]], is an $\mathbb{N}$-[[graded object|graded]] [[pointed object|pointed]] [[simplicial set]] $X_\bullet$ equipped with morphisms $\sigma_n \colon S^1 \wedge X_n \to X_{n+1}$ for all $n \in \mathbb{N}$, where $S^1 \coloneqq \Delta[1]/\partial\Delta[1]$ is the minimal simplicial [[circle]], and where $\wedge$ is the [[smash product]] of [[pointed objects]]. A [[homomorphism]] $f \colon X \to Y$ of sequential prespectra is a collection $f_\bullet \colon X_\bullet \to Y_\bullet$ of homomorphisms of [[pointed simplicial sets]], such that all [[diagrams]] of the form \begin{displaymath} \itexarray{ S^1 \wedge X_n &\stackrel{S^1 \wedge f_n}{\longrightarrow}& S^1 \wedge Y_n \\ \downarrow^{\mathrlap{\sigma_n^X}} && \downarrow^{\mathrlap{\sigma_n^Y}} \\ X_{n+1} &\stackrel{f_{n+1}}{\longrightarrow}& Y_{n+1} } \end{displaymath} [[commuting diagram|commute]]. This gives a [[category]] $SeqSpec(sSet)$ of sequential prespectra. \end{defn} \begin{example} \label{SmashProductOfSpectrumWithSimplicialSet}\hypertarget{SmashProductOfSpectrumWithSimplicialSet}{} For $X \in SeqSpec(sSet)$ and $K \in$ [[sSet]], hence $K_+ \in sSet^{\ast/}$ then $X \wedge K_+$ is the spectrum which is degreewise given by the [[smash product]] of [[pointed objects]] \begin{displaymath} (X \wedge K_+)_n \coloneqq (X_n \wedge K_+) \end{displaymath} and whose structure maps are given by \begin{displaymath} S^1 \wedge (X_n \wedge K_+) \simeq (S^1 \wedge X_n) \wedge K_+ \stackrel{\sigma_n \wedge K_+}{\longrightarrow} X_{n+1}\wedge K_+ \,. \end{displaymath} \end{example} \begin{prop} \label{SimplicialEnrichment}\hypertarget{SimplicialEnrichment}{} The category $SeqSpec$ of def. \ref{SequentialSpectra} becomes a [[simplicially enriched category]] (in fact an $sSet^{\ast/}$-[[enriched category]]) with [[hom objects]] $[X,Y]\in sSet$ given by \begin{displaymath} [X,Y]_n \coloneqq Hom_{SeqSpec(sSet)}(X\wedge \Delta[n]_+,Y) \,. \end{displaymath} \end{prop} \begin{defn} \label{OmegaSpectrum}\hypertarget{OmegaSpectrum}{} An \emph{[[Omega-spectrum]]} in the following is a sequential prespectrum $X$, def. \ref{SequentialSpectra}, such that after [[geometric realization]]/[[Kan fibrant replacement]] ${\vert -\vert}$ the smash$\dashv$pointed-hom [[adjuncts]] \begin{displaymath} {\vert X_n\vert} \stackrel{}{\longrightarrow} {\vert X^{n+1}\vert}^{{\vert S^1\vert}} \end{displaymath} of the structure maps ${\vert \sigma_n\vert}$ are [[weak homotopy equivalences]]. \end{defn} \hypertarget{AsDiagramSpectra}{}\subsubsection*{{As diagram spectra}}\label{AsDiagramSpectra} \begin{defn} \label{CategoriesOfStandardSpheres}\hypertarget{CategoriesOfStandardSpheres}{} Write $S^1_{std} \coloneqq \Delta[1]/\partial\Delta[1]\in sSet^{\ast/}$ for the standard minimal pointed simplicial [[1-sphere]]. Write \begin{displaymath} \iota \;\colon\; StdSpheres \longrightarrow sSet^{\ast/}_{fin} \end{displaymath} for the non-full $sSet^{\ast/}$-[[enriched category|enriched]] [[subcategory]] of pointed [[simplicial object|simplicial]] [[finite sets]], def. \ref{SimplicialSetsPointedAndFinite} whose \begin{itemize}% \item [[objects]] are the [[smash product]] powers $S^n_{std} \coloneqq (S^1_{std})^{\wedge^n}$ (the standard minimal simplicial [[n-spheres]]); \item [[hom-objects]] are \begin{displaymath} [S^{n}_{std}, S^{n+k}_{std}]_{StdSpheres} \coloneqq \left\{ \itexarray{ \ast & for & k \lt 0 \\ im(S^{k}_{std} \stackrel{}{\to} [S^n_{std}, S^{n+k}_{std}]_{sSet^{\ast/}_{fin}}) & otherwise } \right. \end{displaymath} \end{itemize} \end{defn} (\hyperlink{Lydakis98}{Lydakis 98, def. 4.2}), see also (\hyperlink{MMSS00}{MMSS 00}) \href{Model+categories+of+diagram+spectra#SequentialSpectraAsFunctorsOnFreeSSequModules}{this example}. \begin{prop} \label{SequentialSpectraAsDiagramSpectra}\hypertarget{SequentialSpectraAsDiagramSpectra}{} There is an $sSet^{\ast/}$-[[enriched functor]] \begin{displaymath} (-)^seq \;\colon\; [StdSpheres,sSet^{\ast/}] \longrightarrow SeqSpec(sSet) \end{displaymath} (from the category of $sSet^{\ast/}$-[[enriched presheaves|enriched copresheaves]] on the categories of standard simplicial spheres of def. \ref{CategoriesOfStandardSpheres} to the category of [[sequential prespectra]] in [[sSet]]) given on objects by sending $X \in [StdSpheres,sSet^{\ast/}]$ to the sequential prespectrum $X^{seq}$ with components \begin{displaymath} X^{seq}_n \coloneqq X(S^n_{std}) \end{displaymath} and with structure maps \begin{displaymath} \frac{S^1_{std} \wedge X^{seq}_n \stackrel{\sigma_n}{\longrightarrow} X^{seq}_n}{S^1_{std} \longrightarrow [X^{seq}_n, X^{seq}_{n+1}]} \end{displaymath} given by \begin{displaymath} S^1_{std} \stackrel{\widetilde{id}}{\longrightarrow} [S^n_{std}, S^{n+1}_{std}] \stackrel{X_{S^n_{std}, S^{n+1}_{std}}}{\longrightarrow} [X^{seq}_n, X^{seq}_{n+1}] \,. \end{displaymath} This is an $sSet^{\ast/}$ [[enriched category theory|enriched]] [[equivalence of categories]]. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, prop. 4.3}), see also (\hyperlink{MMSS00}{MMSS 00}) \begin{remark} \label{}\hypertarget{}{} Prop. \ref{SequentialSpectraAsDiagramSpectra} is a special case of a more general statement expressing structured spectra equivalently as enriched functors. Analogous statements hold for [[symmetric spectra]] and [[orthogonal spectra]]. See at \emph{[[Model categories of diagram spectra]]} \href{Model+categories+of+diagram+spectra#SModulesAsEnrichedFunctors}{this lemma} and \href{Model+categories+of+diagram+spectra#SequentialSpectraAsFunctorsOnFreeSSequModules}{this example}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{limits_and_colimits}{}\subsubsection*{{Limits and colimits}}\label{limits_and_colimits} \begin{prop} \label{LimitsAndColimitsOfSequentialSpectra}\hypertarget{LimitsAndColimitsOfSequentialSpectra}{} The category $SeqSpec(Top_{cq})$ of sequential spectra (def. \ref{SequentialSpectra}) has all [[limits]] and [[colimits]], and they are computed objectwise: Given \begin{displaymath} X_\bullet \;\colon\; I \longrightarrow SeqSpec(Top_{cg}) \end{displaymath} a [[diagram]] of sequential spectra, then: \begin{enumerate}% \item its colimiting spectrum has component spaces the colimit of the component spaces formed in $Top_{cg}$ (via \href{Introduction+to+Stable+homotopy+theory+--+P#DescriptionOfLimitsAndColimitsInTop}{this prop.} and \href{Introduction+to+Stable+homotopy+theory+--+P#kTopIsCoreflectiveSubcategory}{this corollary}): \begin{displaymath} (\underset{\longrightarrow}{\lim}_i X(i))_n \simeq \underset{\longrightarrow}{\lim}_i X(i)_n \,, \end{displaymath} \item its limiting spectrum has component spaces the limit of the component spaces formed in $Top_{cg}$ (via \href{Introduction+to+Stable+homotopy+theory+--+P#DescriptionOfLimitsAndColimitsInTop}{this prop.} and \href{Introduction+to+Stable+homotopy+theory+--+P#kTopIsCoreflectiveSubcategory}{this corollary}): \begin{displaymath} (\underset{\longleftarrow}{\lim}_i X(i))_n \simeq \underset{\longleftarrow}{\lim}_i X(i)_n \,; \end{displaymath} \end{enumerate} moreover: \begin{enumerate}% \item the colimiting spectrum has structure maps in the sense of def. \ref{SequentialSpectra} given by \begin{displaymath} S^1 \wedge (\underset{\longrightarrow}{\lim}_i X(i)_n) \simeq \underset{\longrightarrow}{\lim}_i ( S^1 \wedge X(i)_n ) \overset{\underset{\longrightarrow}{\lim}_i \sigma_n^{X(i)}}{\longrightarrow} \underset{\longrightarrow}{\lim}_i X(i)_{n+1} \end{displaymath} where the first isomorphism exhibits that $S^1 \wedge(-)$ preserves all colimits, since it is a [[left adjoint]] by prop. \ref{SuspensionAndLoopAdjunctionInClassicalHomotopyTheory}; \item the limiting spectrum has adjunct structure maps in the sense of def. \ref{SequentialSpectrumViaAdjunctStructureMaps} given by \begin{displaymath} \underset{\longleftarrow}{\lim}_i X(i)_n \overset{\underset{\longleftarrow}{\lim}_i \tilde \sigma_n^{X(i)}}{\longrightarrow} \underset{\longleftarrow}{\lim}_i Maps(S^1, X(i)_n)_\ast \simeq Maps(S^1, \underset{\longleftarrow}{\lim}_i X(i)_n)_\ast \end{displaymath} where the last isomorphism exhibits that $Maps(S^1,-)_\ast$ preserves all limits, since it is a [[right adjoint]] by prop. \ref{SuspensionAndLoopAdjunctionInClassicalHomotopyTheory}. \end{enumerate} \end{prop} \begin{proof} That the limits and colimits exist and are computed objectwise follows via prop. \ref{SequentialSpectraAsDiagramSpectra} from the general statement for categories of topological functors (\href{Introduction+to+Stable+homotopy+theory+--+P#TopologicallyEnrichedCopresheavesHaveAllLimitsAndColimits}{prop.}). But it is also immediate to directly check the [[universal property]]. \end{proof} \begin{example} \label{WedgeSumOfSpectra}\hypertarget{WedgeSumOfSpectra}{} The [[coproduct]] of [[spectra]] $X, Y \in SeqSpec(Top_{cg})$, called the \textbf{wedge sum of spectra} \begin{displaymath} X \vee Y \coloneqq X \sqcup Y \end{displaymath} is componentwise the [[wedge sum]] of pointed topological spaces (\href{Introduction+to+Stable+homotopy+theory+--+P#WedgeSumAsCoproduct}{exmpl.}) \begin{displaymath} (X \vee Y)_n = X_n \vee Y_n \end{displaymath} with structure maps \begin{displaymath} \sigma_n^{X \vee Y} \;\colon\; S^1 \wedge (X \vee Y) \simeq S^1 \wedge X \,\vee\, S^1 \wedge Y \overset{(\sigma_n^X, \sigma_n^Y)}{\longrightarrow} X_{n+1} \vee Y_{n+1} \,. \end{displaymath} \end{example} \hypertarget{tensoring_and_powering_over_pointed_spaces}{}\subsubsection*{{Tensoring and powering over pointed spaces}}\label{tensoring_and_powering_over_pointed_spaces} The following defines [[tensoring]] and [[powering]] of sequential spectra over [[pointed topological spaces]]/[[pointed simplicial sets]]. \begin{defn} \label{TensoringAndPoweringOfSequentialSpectra}\hypertarget{TensoringAndPoweringOfSequentialSpectra}{} Let $X$ be a sequential spectrum and $K$ a [[pointed topological space]]/[[pointed simplicial set]]. Then \begin{enumerate}% \item $X \wedge K$ is the sequential spectrum with \begin{itemize}% \item $(X \wedge K)_n \coloneqq X_n \wedge K$ ([[smash product]]) \item $\sigma_n^{X\wedge K} \coloneqq \sigma_n^{X} \wedge id_{K}$. \end{itemize} \item $X^K$ is the sequential spectrum with \begin{itemize}% \item $(X^K)_n \coloneqq (X_n)^K$ ([[pointed mapping space]]) \item $\sigma_n^{(X^k)} \colon S^1 \wedge X_n^K \to (S^1 \wedge X_n)^K \overset{(\sigma_n)^K}{\longrightarrow} (X_{n+1})^K$. \end{itemize} \end{enumerate} \end{defn} \hypertarget{ModelCategoryStructures}{}\subsubsection*{{Model category structures}}\label{ModelCategoryStructures} There is a standard [[model structure on spectra]] for sequential spectra in [[Top]] the [[model structure on topological sequential spectra]] (\hyperlink{Kan63}{Kan 63}, \hyperlink{MMSS00}{MMSS 00}) and in [[simplicial sets]], the [[Bousfield-Friedlander model structure]] (\hyperlink{BousfieldFriedlander78}{Bousfield-Friedlander 78}). The \emph{strict} Bousfield-Friedlander model structure (of which the actual stable version is the [[Bousfield localization of model categories|left Bousfield localization]] at the [[stable weak homotopy equivalences]]) is equivalently the [[projective model structure on enriched functors]] for the presentation of sequential spectra from prop. \ref{SequentialSpectraAsDiagramSpectra}: \begin{displaymath} SeqSpec(sSet)_{stable} \stackrel{\longleftarrow}{\overset{Bousf.\;loc}{\longrightarrow}} SeqSpec(sSet)_{strict} = [StdSpheres, Top^{\ast/}_{Quillen}]_{proj} \,. \end{displaymath} \hypertarget{SuspensionAndLooping}{}\subsubsection*{{Suspension and looping}}\label{SuspensionAndLooping} There are \emph{three} common constructions of looping and suspension of sequential spectra (with analogues for [[highly structured spectra]]). While they are not isomorphic, they are stably equivalent. \begin{defn} \label{ShiftedSpectrum}\hypertarget{ShiftedSpectrum}{} For $X$ a [[sequential spectrum]] and $k \in \mathbb{Z}$, the $k$-fold \textbf{shifted spectrum} of $X$ is the sequential spectrum denoted $X[k]$ given by \begin{itemize}% \item $(X[k])_n \coloneqq \left\{ \itexarray{X_{n+k} & for \; n+k \geq 0 \\ \ast & otherwise } \right.$; \item $\sigma_n^{X[k]} \coloneqq \left\{ \itexarray{ \sigma^X_{n+k} & for \; n+k \geq 0 \\ 0 & otherwise} \right.$. \end{itemize} \end{defn} \begin{defn} \label{SequentialSpectrumRealSuspension}\hypertarget{SequentialSpectrumRealSuspension}{} For $X$ a sequential spectrum, then \begin{enumerate}% \item the \textbf{real suspension} of $X$ is $X \wedge S^1$ according to def. \ref{TensoringAndPoweringOfSequentialSpectra}; \item the \textbf{real looping} of $X$ is $X^{S^1}$ according to def. \ref{TensoringAndPoweringOfSequentialSpectra}. \end{enumerate} \end{defn} \begin{defn} \label{SequentialSpectrumFakeSuspension}\hypertarget{SequentialSpectrumFakeSuspension}{} For $X$ a sequential spectrum, then \begin{enumerate}% \item the \textbf{fake suspension} of $X$ is the sequential spectrum $\Sigma X$ with \begin{enumerate}% \item $(\Sigma X)_n \coloneqq S^1 \wedge X_n$ \item $\sigma_n^{\Sigma X} \coloneqq S^1 \wedge (\sigma_n)$. \end{enumerate} \item the \textbf{fake looping} of $X$ is the sequential spectrum $\Omega X$ with \begin{enumerate}% \item $(\Omega X)_n \coloneqq (X_n)^{S^1}$; \item $\tilde \sigma_n^{\Omega X} \coloneqq (\sigma_n)^{S^1}$. \end{enumerate} \end{enumerate} Here $\tilde \Sigma_n$ denotes the $(\Sigma\dashv \Omega)$-[[adjunct]] of $\sigma_n$. \end{defn} e.g. (\hyperlink{Jardine15}{Jardine 15, section 10.4}). \begin{defn} \label{ShiftingCommutesWithLoopingAndSuspensionOfSequentialSpectra}\hypertarget{ShiftingCommutesWithLoopingAndSuspensionOfSequentialSpectra}{} The looping and suspension operations in def. \ref{SequentialSpectrumRealSuspension} and def. \ref{SequentialSpectrumFakeSuspension} commute with shifting, def. \ref{ShiftedSpectrum}. Therefore in expressions like $\Sigma (X[1])$ etc. we may omit the parenthesis. \end{defn} \begin{defn} \label{}\hypertarget{}{} The canonical morphism \begin{enumerate}% \item $\Sigma X \longrightarrow X[1]$ is given in degree $n$ by $\sigma_n^X$. \item $X[-1] \longrightarrow \Omega X$ is given in degree $n$ by $\tilde \sigma^X_{n-1}$. \end{enumerate} \end{defn} \begin{prop} \label{AdjunctionsBetweenLoopingAndDeloopingForSeqSpec}\hypertarget{AdjunctionsBetweenLoopingAndDeloopingForSeqSpec}{} The constructions from def. \ref{ShiftedSpectrum}, def. \ref{SequentialSpectrumRealSuspension} and def. \ref{SequentialSpectrumFakeSuspension} form pairs of [[adjoint functors]] $SeqSpec \to SeqSpec$ like so: \begin{enumerate}% \item $(-)[1] \;\dashv\; (-)[-1] \;\dashv\; (-)[1] \;\dashv\; \cdots$; \item $(-)\wedge S^1 \dashv (-)^{S^1}$; \item $\Sigma \dashv \Omega$. \end{enumerate} \end{prop} \begin{proof} The first is immediate from the definition. The second is just degreewise the adjunction [[smash product]]$\dashv$[[pointed mapping space]] (discussed \href{pointed+object#ClosedMonoidalStructure}{here}), since by definition the smash product and mapping spaces here do not interact non-trivially with the structure maps. The third follows by applying the [[smash product]]$\dashv$[[pointed mapping space]]-adjunction isomorphism twice, like so: Morphisms $f\colon \Sigma X \to Y$ are in components given by commuting diagrams of this form: \begin{displaymath} \itexarray{ S^1 \wedge S^1 \wedge X_{n} &\overset{S^1 \wedge f_{n}}{\longrightarrow}& S^1 \wedge Y_{n} \\ {}^{\mathllap{S^1 \wedge \sigma_n^X}}\downarrow && \downarrow^{\mathrlap{\sigma^Y_n}} \\ S^1 \wedge X_{n+1} &\underset{f_{n+1}}{\longrightarrow}& Y_{n+1} } \,. \end{displaymath} Applying the adjunction isomorphism diagonally gives a bijection to diagrams of this form: \begin{displaymath} \itexarray{ S^1 \wedge X_n &\overset{f_n}{\longrightarrow}& Y_n \\ {}^{\mathllap{\sigma^X_n}}\downarrow && \downarrow^{\mathrlap{\tilde \sigma^Y_n}} \\ X_{n+1} &\underset{\tilde f_{n+1}}{\longrightarrow}& (Y_{n+1})^{S^1} } \,. \end{displaymath} Then applying the same isomorphism diagonally once more gives a further bijection to commuting diagrams of this form: \begin{displaymath} \itexarray{ X_n &\overset{\tilde f_n}{\longrightarrow}& (Y_n)^{S^1} \\ {}^{\mathllap{\tilde \sigma_n}}\downarrow && \downarrow^{\mathrlap{(\tilde \sigma^Y_n)^{S^1}}} \\ (X_{n+1})^{S^1} &\underset{(\tilde f_n)^{S^1}}{\longrightarrow}& \left((Y_{n+1})^{S^1}\right)^{S^1} } \,. \end{displaymath} This finally equivalently exhibits morphisms of the form \begin{displaymath} X \longrightarrow \Omega Y \,. \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} For $X$ a sequential spectrum, then $X[-1][1] = X$ while $X[1][-1]$ is $X$ with its 0-th component space set to the point. The [[adjunction unit]] $X \to X[1][-1]$ has components \begin{displaymath} \itexarray{ \vdots && \vdots \\ X_2 &\overset{id}{\longrightarrow}& X_2 \\ X_1 &\overset{id}{\longrightarrow}& X_1 \\ \underbrace{X_0} &\overset{0}{\longrightarrow}& \underbrace{\;\ast\;} \\ X &\overset{\eta}{\longrightarrow}& X[1][-1] } \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} For $X$ a sequential spectrum, then (using remark \ref{ShiftingCommutesWithLoopingAndSuspensionOfSequentialSpectra} to suppress parenthesis) \begin{enumerate}% \item the structure maps constitute a homomorphism \begin{displaymath} \Sigma X[-1] \longrightarrow X \end{displaymath} and this is a stable equivalence. \item the adjunct structure maps constitute a homomorphism \begin{displaymath} X \longrightarrow \Omega X[1] \,. \end{displaymath} If $X$ is an [[Omega-spectrum]] (def. \ref{OmegaSpectrum}) then this is a weak equivalence in the strict model structure, hence in particular a stable equivalence. \end{enumerate} \end{prop} \begin{proof} The diagrams that need to commute for the structure maps to give a homomorphism as claimed are in degree 0 this one \begin{displaymath} \itexarray{ S^1 \wedge S^1 \wedge \ast &\overset{0}{\longrightarrow}& X_0 \\ {}^{\mathllap{S^1 \wedge 0}}\downarrow && \downarrow^{\mathrlap{\sigma_0}} \\ S^1 \wedge X_0 &\underset{\sigma_0}{\longrightarrow}& X_1 } \end{displaymath} and in degree $n \geq 1$ these: \begin{displaymath} \itexarray{ S^1 \wedge S^1 \wedge X_{n-1} &\overset{S^1 \wedge \sigma_{n-1}}{\longrightarrow}& X_n \\ {}^{\mathllap{S^1 \wedge \sigma_{n-1}}}\downarrow && \downarrow^{\mathrlap{\sigma_n}} \\ S^1 \wedge X_{n} &\underset{\sigma_n}{\longrightarrow}& X_{n+1} } \,. \end{displaymath} But in all these cases commutativity it trivially satisfied. Now as in the proof of prop. \ref{AdjunctionsBetweenLoopingAndDeloopingForSeqSpec}, under applying the $(S^1\wedge (-)) \dashv (-)^{S^1}$-adjunction isomorphism twice, these diagrams are in bijection to diagrams for $n \geq 1$ of the form \begin{displaymath} \itexarray{ X_{n-1} &\overset{\tilde \sigma_{n-1}}{\longrightarrow}& (X_n)^{S^1} \\ {}^{\mathllap{\tilde \sigma_{n-1}}}\downarrow && \downarrow^{\mathrlap{\tilde \sigma_n}} \\ (X_n)^{S^1} &\underset{(\tilde \sigma_n)^{S^1}}{\longrightarrow}& \left((X_n)^{S^1}\right)^{S^1} } \,. \end{displaymath} This gives the claimed morphism $X \to \Omega X[-1]$. If $X$ is an [[Omega-spectrum]], then by definition this last morphism is already a weak equivalence in the strict model structure, hence in particular a weak equivalence in the stable model structure. From this it follows that also the first morphism is a stable equivalence, because for every [[Omega-spectrum]] $Y$ then by the adjunctions in prop. \ref{AdjunctionsBetweenLoopingAndDeloopingForSeqSpec} \begin{displaymath} \itexarray{ [X, Y]_{strict} &\overset{}{\longrightarrow}& [\Sigma X[-1],Y]_{strict} \\ {}^{\mathllap{id}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ [X,Y]_{strict} &\underset{\simeq}{\longrightarrow}& [X, \Omega Y[1]]_{strict} } \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} For $X$ a sequential spectrum in simplicial sets. Then there are stable equivalences \begin{displaymath} X\wedge S^1 \longrightarrow \Sigma X \longrightarrow X[1] \end{displaymath} between the real suspension (def. \ref{SequentialSpectrumRealSuspension}), the fake suspension (def. \ref{SequentialSpectrumFakeSuspension}) and the shift by +1 (def. \ref{ShiftedSpectrum}) of $X$. If each $X_n$ is a [[Kan complex]], then there are stable equivalences \begin{displaymath} X^{S^1} \longrightarrow \Omega X \longrightarrow X[-1] \end{displaymath} between the real looping (def. \ref{SequentialSpectrumRealSuspension}), the fake looping (def. \ref{SequentialSpectrumFakeSuspension}) and the shift by -1 (def. \ref{ShiftedSpectrum}) of $X$. \end{prop} (\hyperlink{Jardine15}{Jardine 15, corollary 10.54}) \hypertarget{relation_to_excisive_functors}{}\subsubsection*{{Relation to excisive functors}}\label{relation_to_excisive_functors} We discuss aspects of the equivalence of sequential spectra carrying the [[Bousfield-Friedlander model structure]] with [[excisive (infinity,1)-functors]], modeled as [[simplicial functors]] carrying a [[model structure for excisive functors]]. \begin{defn} \label{SimplicialSetsPointedAndFinite}\hypertarget{SimplicialSetsPointedAndFinite}{} Write \begin{itemize}% \item [[sSet]] for the [[category]] of [[simplicial sets]]; \item $sSet^{\ast/}$ for the category of [[pointed simplicial sets]]; \item $sSet_{fin}^{\ast/}\simeq s(FinSet)^{\ast/} \hookrightarrow sSet^{\ast/}$ for the [[full subcategory]] of [[pointed simplicial set|pointed simplicial]] [[finite sets]]. \end{itemize} Write \begin{displaymath} sSet^{\ast/} \stackrel{\overset{(-)_+}{\longleftarrow}}{\underset{u}{\longrightarrow}} sSet \end{displaymath} for the [[free-forgetful adjunction]], where the [[left adjoint]] functor $(-)_+$ freely adjoins a base point. Write \begin{displaymath} \wedge \colon sSet^{\ast/} \times sSet^{\ast/} \longrightarrow sSet^{\ast/} \end{displaymath} for the [[smash product]] of [[pointed object|pointed]] [[simplicial sets]], similarly for its restriction to $sSet_{fin}^{\ast}$: \begin{displaymath} X \wedge Y \coloneqq cofib\left( \; \left(\, (u(X),\ast) \sqcup (\ast, u(Y)) \,\right) \longrightarrow u(X) \times u(Y) \; \right) \,. \end{displaymath} This gives $sSet^{\ast/}$ and $sSet^{\ast/}_{fin}$ the structure of a [[closed monoidal category]] and we write \begin{displaymath} [-,-]_\ast \;\colon\; (sSet^{\ast/})^{op} \times sSet^{\ast/} \longrightarrow sSet^{\ast/} \end{displaymath} for the corresponding [[internal hom]], the pointed [[function complex]] functor. \end{defn} We regard all the categories in def. \ref{SimplicialSetsPointedAndFinite} canonically as [[simplicially enriched categories]], and in fact regard $sSet^{\ast/}$ and $sSet^{\ast/}_{fin}$ as $sSet^{\ast/}$-[[enriched categories]]. The category that supports a [[model structure for excisive functors]] is the $sSet^{\ast/}$-[[enriched functor category]] \begin{displaymath} [sSet^{\ast/}_{fin}, sSet^{\ast/}] \,. \end{displaymath} (\hyperlink{Lydakis98}{Lydakis 98, example 3.8, def. 4.4}) \begin{prop} \label{QuillenEquivalenceBetweenSequentialBFAndExcisiveFunctors}\hypertarget{QuillenEquivalenceBetweenSequentialBFAndExcisiveFunctors}{} The [[adjunction]] \begin{displaymath} (\iota_\ast \dashv \iota^\ast) \;\colon\; [sSet^{\ast/}_{fin}, sSet^{\ast/}]_{Ly} \stackrel{\overset{\iota_\ast}{\longleftarrow}}{\underset{\iota^\ast}{\longrightarrow}} [StdSpheres, sSet^{\ast/}] \underoverset{\simeq}{(-)^{seq}}{\longrightarrow} SeqSpec(sSet)_{BF} \end{displaymath} (given by restriction $\iota^\ast$ along the defining inclusion $\iota$ of def. \ref{CategoriesOfStandardSpheres} and by left [[Kan extension]] $\iota_\ast$ along $\iota$, and combined with the equivalence $(-)^{seq}$ of prop. \ref{SequentialSpectraAsDiagramSpectra}) is a [[Quillen adjunction]] and in fact a [[Quillen equivalence]] between the [[Bousfield-Friedlander model structure]] on sequential prespectra and Lydakis' [[model structure for excisive functors]]. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, theorem 11.3}) For more details see at \emph{[[model structure for excisive functors]]}. The analogous statement for spectra in $Top$ is in (\hyperlink{MMSS00}{MMSS 00}). \begin{remark} \label{}\hypertarget{}{} Prop. \ref{QuillenEquivalenceBetweenSequentialBFAndExcisiveFunctors} shows why plain sequential spectra do not carry a [[symmetric smash product of spectra]]: By \href{smash+product+of+spectra#WhySequentialSpectraHaveNoSymmetricSmashProduct}{this remark} at \emph{[[smash product of spectra]]} the graded-commutativity implicit in the [[braiding]] of the [[smash product]] of [[n-spheres]] is not reflected after restricting from $(sSet^{\ast/}, \wedge)$ to the non-full subcategory $StdSpheres$. \end{remark} \hypertarget{SmashProduct}{}\subsubsection*{{Smash product}}\label{SmashProduct} The [[smash product of spectra]] realized on sequential spectra never has good proprties before passage to the [[stable homotopy category]] or lift to better models (see \href{smash%20product+of+spectra#GradedCommutativity}{here}), but it may still be defined in various ways: \begin{defn} \label{SmashProductByDoublingDegrees}\hypertarget{SmashProductByDoublingDegrees}{} For $X,Y$ two sequential spectra, def. \ref{SequentialSpectra}, their smash product $X \wedge Y$ is the sequential spectrum which in even degrees is given by the [[smash product]] fo the pointed component spaces of half that degree \begin{displaymath} (X\wedge Y)_{2n} \coloneqq X_n \wedge Y_n \end{displaymath} and in odd degree by \begin{displaymath} (X\wedge Y)_{2n+1} \coloneqq S^1 \wedge X_n \wedge Y_n \end{displaymath} with structure maps being in even degree the identity \begin{displaymath} \sigma^{X \wedge Y}_{2 n} \colon S^1 \wedge (X \wedge Y)_{2n} = S^1 \wedge X_n \wedge Y_n = (X \wedge Y)_{2n+1} \end{displaymath} and in odd degree as the composite \begin{displaymath} \sigma^{X\wedge Y}_{2n+1} \colon S^1 \wedge (X \wedge Y)_{2n+1} \simeq S^1 \wedge S^1 \wedge X_n \wedge Y_n \simeq S^1 \wedge X_n \wedge S^1 \wedge Y_n \stackrel{\sigma_n^X \wedge \sigma^Y_n}{\longrightarrow} X_{n+1} \wedge Y_{n+1} \simeq (X\wedge Y)_{2n+2} \,. \end{displaymath} \end{defn} (\hyperlink{Lydakis98}{Lydakis 98, def. 10.20}, \href{Gamma-space#Lydakis98}{Lydakis 98b, def. 5.9}, \hyperlink{MMSS00}{MMSS 00, def. 11.6}) \begin{prop} \label{SmashProductCompatibleWithTheOneOnSpectra}\hypertarget{SmashProductCompatibleWithTheOneOnSpectra}{} Under the Quillen equivalence of prop. \ref{QuillenEquivalenceBetweenSequentialBFAndExcisiveFunctors} the symmetric monoidal [[Day convolution product]] on pre-[[excisive functors]] as well as the [[symmetric monoidal smash product of spectra|symmetric monoidal smash product]] of [[orthogonal spectra]] is identified with the [[smash product of spectra]] realized on sequential spectra via def. \ref{SmashProductByDoublingDegrees}. \end{prop} (\hyperlink{Lydakis98}{Lydakis 98, theorem 12.5}, \hyperlink{MMSS00}{MMSS 00, prop. 11.9}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[symmetric spectrum]], [[orthogonal spectrum]] \item [[spectrum object]] \item [[cospectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Daniel Kan]], \emph{Semisimplicial spectra}, Illinois J. Math. Volume 7, Issue 3 (1963), 463-478. (\href{http://projecteuclid.org/euclid.ijm/1255644953}{Euclid}) \item [[Michael Boardman]], \emph{Stable homotopy theory}, mimeographed notes, University of Warwick, 1965 onward \item [[Frank Adams]], Part III, section 2 \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Robert Switzer]], chapter 8 of \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \item [[Aldridge Bousfield]], [[Eric Friedlander]], \emph{Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets}, Springer Lecture Notes in Math., Vol. 658, Springer, Berlin, 1978, pp. 80-130. (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/bousfield-friedlander.pdf}{pdf}) \item Lydakis, \emph{Simplicial functors and stable homotopy theory} Preprint, available via Hopf archive, 1998 (\href{http://hopf.math.purdue.edu/Lydakis/s_functors.pdf}{pdf}) \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], section 11 of \emph{[[Model categories of diagram spectra]]}, Proceedings London Mathematical Society Volume 82, Issue 2, 2000 (\href{http://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf}{pdf}, \href{http://plms.oxfordjournals.org/content/82/2/441.short?rss=1&ssource=mfc}{publisher}) \item [[Stefan Schwede]], \emph{Symmetric spectra}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \item [[John F. Jardine]], section 10 of \emph{[[Local homotopy theory]]}, 2016 \end{itemize} Symmetric spectra in more general [[model categories]] (using the [[Bousfield-Friedlander theorem]]) are discussed in \begin{itemize}% \item [[Stefan Schwede]], section 3 of \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997) 104 (\href{http://www.math.uni-bonn.de/people/schwede/modelspec.pdf}{pdf}) \item [[Mark Hovey]], \emph{Spectra and symmetric spectra in general model categories}, Journal of Pure and Applied Algebra Volume 165, Issue 1, 23 November 2001, Pages 63--127 (\href{https://arxiv.org/abs/math/0004051}{arXiv:math/0004051}) \end{itemize} [[!redirects sequential spectra]] [[!redirects sequential prespectrum]] [[!redirects sequential prespectra]] [[!redirects sequential pre-spectrum]] [[!redirects sequential pre-spectra]] [[!redirects Boardman spectrum]] [[!redirects Boardman spectra]] \end{document}