\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sequentially compact topological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relationship_to_compactness}{Relationship to Compactness}\dotfill \pageref*{relationship_to_compactness} \linebreak \noindent\hyperlink{Examples}{Examples and counter-examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[topological space]] is called \emph{sequentially compact} if every [[sequence]] of points in that space has a sub-sequence which [[convergence|converges]]. In general this concept neither implies nor is implied by that of actual [[compact space|compactness]], but for some types of [[topological spaces]], such as [[metric spaces]], it is equivalent. [[compact space|Compactness]] is an extremely useful concept in [[topology]]. The basic idea is that a [[topological space]] is [[compact space|compact]] if it isn't ``fuzzy around the edges''. Whilst one can study a topological space by itself, it is often useful to probe it with known spaces. A common choice for topological spaces, and in particular metric spaces, is to use the natural numbers $\mathbb{N}$, and the [[one-point compactification]] $\mathbb{N} \cup \{*\}$ of the natural numbers. This is more traditionally known as studying the topology using sequences and convergent sequences. Thus one can ask, ``Can I detect compactness using probes from $\mathbb{N}$, and $\mathbb{N} \cup \{*\}$?''. The short answer to this is ``No'', but that just reveals that the question was too restrictive. Rather, one should ask ``What does compactness look like if all I'm allowed to use are probes from $\mathbb{N}$ and $\mathbb{N} \cup \{*\}$?''. The answer to that question is ``sequential compactness''. Thus \textbf{sequential compactness} is what [[compact space|compactness]] looks like if all one has to test it are sequences. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{seqcpt}\hypertarget{seqcpt}{} A topological space is \textbf{sequentially compact} if every [[sequence]] in it has a [[convergence|convergent]] [[subsequence]]. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The following is a list of properties of and pertaining to sequentially compact spaces. \begin{enumerate}% \item For a [[metric space]], the notions of sequential compactness and compactness coincide. See at \emph{[[sequentially compact metric spaces are equivalently compact metric spaces]]}. \item The [[Eberlein-Smulian theorem|Eberlein–Šmulian theorem]] states that in a [[Banach space]], for a subset with regard to the [[weak topology]], compactness and sequentially compactness are both equivalent to the weaker notion of [[countably compact space|countable compactness]]. \item A [[countable set|countable]] product of sequentially compact spaces is again sequentially compact. Let $\{X_k\}$ be a countable family of sequentially compact spaces. Let $(a_l)$ be a sequence in $\prod X_k$. For each $m$ we recursively define an infinite subset $A_m \subseteq A_{m-1} \subseteq \mathbb{N}$ with the property that the sequence $(a_l)_{l \in A_m}$ converges when projected down to $\prod_{k=1}^m X_k$. Let $l_m = \min\{A_l\}$. Consider the sequence $(a_{l_m})$. For each $k$, we choose a limit $x_k$ of the projection of $(a_l)_{l \in A_k}$ to $X_k$. Let $x = (x_k) \in \prod X_k$. Let $U$ be a neighbourhood of $x$. Then there is some $n \in \mathbb{N}$ and neighbourhood $U_n \subseteq \prod_{k=1}^n X_k$ of $(x_k)_{k=1}^n$ such that $U$ contains the preimage of $U_n$. For $m \ge n$, the sequence $(l_m)$ is contained in $A_n$ and so the image of $(a_{l_m})$ converges to $(x_k)_{k=1}^n$. Hence there is some $r$ such that for $m \ge r$, the projection of $a_{l_m}$ lies in $U_n$. Hence for $m \ge r$, $a_{l_m} \in U$. Thus $(a_{l_m})$ converges to $(x_k)$ and so $\prod X_k$ is sequentially compact. This shows that the example of a compact space that is not sequentially compact is about as simple as can be. \item The theorem that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism has a counterpart for sequentially compact spaces. \begin{theorem} \label{SeqCptReg}\hypertarget{SeqCptReg}{} Let $\mathcal{T}_1$ and $\mathcal{T}_2$ be two topologies on a set $X$ such that: \begin{enumerate}% \item $\mathcal{T}_1 \supseteq \mathcal{T}_2$ (equivalently, the identity map on $X$ is continuous as a map $(X,\mathcal{T}_1) \to (X, \mathcal{T}_2)$) \item $\mathcal{T}_1$ is sequentially compact \item $\mathcal{T}_2$ is [[completely regular space|completely regular]] and singleton sets are $G_\delta$-[[G-delta set|sets]], \end{enumerate} then $\mathcal{T}_1 = \mathcal{T}_2$. \end{theorem} \begin{proof} Let $V \subseteq X$ be such that $V \notin \mathcal{T}_2$. Then it must be non-empty and there must be a point $v \in V$ such that $V$ is not a neighbourhood of $v$. As $\mathcal{T}_2$ is completely regular and singleton sets are $G_\delta$ sets, there is a continuous function $g \colon (X, \mathcal{T}_2) \to \mathcal{R}$ such that $g^{-1}(0) = \{v\}$. Since $V$ is not a neighbourhood of $v$, for each $n \in \mathbb{N}$, the set $g^{-1}(-\frac1n, \frac1n)$ is not wholly contained in $V$. Thus for each $n$ there is a point $x_n \in X$ such that $x_n \notin V$ and $|g(x_n)| \lt \frac1n$. As $\mathcal{T}_1$ is sequentially compact, this sequence has a $\mathcal{T}_1$-convergent subsequence, say $(x_{n_k})$ converging to $y$. Since $g(x_n) \to 0$, $g(x_{n_k}) \to 0$ and thus $g(y) = 0$. Thus $y = v$ and so $(x_{n_k}) \to v$ in $\mathcal{T}_1$. As $x_{n_k} \notin V$ for all $n_k$, and $v \in V$, it must be the case that $V$ is not a $\mathcal{T}_1$-neighbourhood of $v$. Hence $V \notin \mathcal{T}_1$. Thus $\mathcal{T}_1 \subseteq \mathcal{T}_2$, whence they are equal. \end{proof} \item The [[image]] of a sequentially compact space $X$ under a continuous map $f: X \to Y$ is also sequentially compact. For suppose $y_n$ is a sequence in $f(X)$, say $y_n = f(x_n)$. Then $x_n$ has a convergent subsequence $x_{n_j}$, converging to $x$ say, and by continuity $y_{n_j} = f(x_{n_j})$ converges to $f(x)$. \end{enumerate} \hypertarget{relationship_to_compactness}{}\subsubsection*{{Relationship to Compactness}}\label{relationship_to_compactness} [[compact space|Compactness]] does not imply sequentially compactness, nor does sequentially compactness imply compactness, without further assumptions, see at \emph{\hyperlink{Examples}{Examples and counter-examples}} below. In [[metric spaces]] for example both notions coincide, see at [[sequentially compact metric spaces are equivalently compact metric spaces]]. (This is a consequence of the [[Lebesgue number lemma]] and the fact that [[sequentially compact metric spaces are totally bounded]].) This is \emph{not} a contradiction to the statement that compact is equivalent to every [[net]] having a convergent subnet: Given a sequence in a compact space, its convergent \emph{subnet} need not be a \emph{subsequence} (see [[net]] for a definition of subnet). \hypertarget{Examples}{}\subsection*{{Examples and counter-examples}}\label{Examples} A [[metric space]] is sequentially compact precisely if it is [[compact topological space|compact]]. See at \emph{[[sequentially compact metric spaces are equivalently compact metric spaces]]}. In general neither of these two properties implies the other: \begin{itemize}% \item Examples of a sequentially compact spaces which are not compact are given in in (\hyperlink{BuskesRooij97}{Buskes-Rooij 97, example 13.5}, \hyperlink{Patty08}{Patty 08, chapter 4, example 13}, \hyperlink{Vermeeren10}{Vermeeren 10, prop. 18}). The [[long line]] is such an example. \item An example of a [[compact topological space]] which is not sequentially compact is given in (\hyperlink{SteenSeebach70}{Steen-Seebach 70, item 105}), recalled at \hyperlink{Vermeeren10}{Vermeeren 10, prop. 17}. See at \href{compact+space#CompactSpacesWhichAreNotSequentiallyCompact}{compact space -- Compact spaces which are not sequentially compact}. \end{itemize} \begin{example} \label{ACompactSpaceNotSequentiallyCompact}\hypertarget{ACompactSpaceNotSequentiallyCompact}{} \textbf{(a compact space which is not sequentially compact)} Consider the following uncountable power of the [[discrete space]] $2$, namely the [[product topological space]] (with its [[Tychonoff topology]]) \begin{displaymath} X \coloneqq \underset{f: \mathbb{N} \to 2}{\prod} Disc(\{0,1\}) \end{displaymath} of copies of the discrete space on two elements, indexed by functions $f: \mathbb{N} \to \{0, 1\}$. Since $Disc(\{0,1\})$ is a [[finite topological space|finite]] [[discrete topological space]] it is clearly compact. Therefore the [[Tychonoff theorem]] says that also $X$ is compact. Let $(x_n)_{n: \mathbb{N}}$ be the sequence in $X$ given by the [[duality|double-dual embedding]] \begin{displaymath} \mathbb{N} \to 2^{2^\mathbb{N}}, \end{displaymath} i.e., define $x_n$ to have coordinate at $f: \mathbb{N} \to 2$ given by $(x_n)_f = f(n)$. We claim this sequence has no subsequence that converges in $X$, so that $X$ is not sequentially compact. We will argue by contradiction. (This [[refutation by contradiction]], refuting sequential compactness, is [[constructive logic|constructively valid]]. The argument above that affirms compactness, via the Tychonoff theorem, is not constructive.) Suppose instead some subsequence $(x_{(n_k)})_{k \in \mathbb{N}}$ converges to some $x \in X$. Choose any $f: \mathbb{N} \to 2$ that is not eventually constant on the subsequence $(n_k)_{k: \mathbb{N}}$; for example, define $f: \mathbb{N} \to 2$ by $f(n_k) = k\; mod\; 2$, else $f(n) = 0$ if $n$ does not appear in the subsequence. Consider the open set $U_f = \{x_f\} \times \prod_{g: g \neq f} \{0, 1\}$, which is an open neighborhood of $x$. In order to have $x_{n_k} \in U_f$ for all $k \geq k_0$, we'd have to have $f(n_k) = x_f$ for all $k \geq k_0$, in other words $f$ would be eventually constant on the subsequence $n_k$. Contradiction. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[compact topological space]] \item [[countably compact topological space]] \item [[paracompact topological space]] \item [[locally compact topological space]] \item [[compactly generated topological space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Buskes, van Rooij, \emph{Topological Spaces: From Distance to Neighbourhood}, Springer 1997 \item Lynn Steen, J. Arthur Seebach, \emph{Counterexamples in Topology}, Springer-Verlag, New York (1970) 2nd edition, (1978), Reprinted by Dover Publications, New York, 1995 \item Wayne Patty, \emph{Foundations of Topology}, Jones and Bartlett Publishers (2008) \item [[Stijn Vermeeren]], \emph{Sequences and nets in topology}, 2010 (\href{http://stijnvermeeren.be/download/mathematics/nets.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Sequentially_compact_space}{Sequentially compact space}} \end{itemize} [[!redirects sequentially compact space]] [[!redirects sequentially compact spaces]] [[!redirects sequentially compact]] [[!redirects sequential compactness]] [[!redirects sequentially compact metric space]] [[!redirects sequentially compact metric spaces]] \end{document}