\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{shape of an (infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{shape_of_a_locally_connected_topos}{Shape of a locally $\infty$-connected topos}\dotfill \pageref*{shape_of_a_locally_connected_topos} \linebreak \noindent\hyperlink{shape_of_a_topological_space}{Shape of a topological space}\dotfill \pageref*{shape_of_a_topological_space} \linebreak \noindent\hyperlink{Retract}{Shape of an essential retract}\dotfill \pageref*{Retract} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} If an [[(∞,1)-topos]] $\mathbf{H}$ is that of [[(∞,1)-category of (∞,1)-sheaves|(∞,1)-sheaves]] on (the [[site]] of [[category of open subsets|open subsets]] of) a [[paracompact space|paracompact]] [[topological space]] -- $\mathbf{H} = Sh_{(\infty,1)}(X)$ -- then its \textbf{shape} is the \emph{strong shape} of $X$ in the sense of [[shape theory]]: a [[pro-object]] $Shape(X)$ in the category of [[CW-complex]]es. It turns out that $Shape(X)$ may be extracted in a canonical fashion from just the [[(∞,1)-topos]] $Sh_{(\infty,1)}(X)$, and in a way that makes sense for any [[(∞,1)-topos]]. This then gives a definition of shape of general $(\infty,1)$-toposes. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udef} The composite [[(∞,1)-functor]] \begin{displaymath} \Pi : (\infty,1)Topos \stackrel{Y}{\to} Func((\infty,1)Topos, \infty Grpd)^{op} \stackrel{Lex(PSh(-), \infty Grpd)}{\to} AccLex(\infty Grpd, \infty Grpd)^{op} \simeq Pro \infty Grpd \end{displaymath} is the \textbf{shape functor} . Its value \begin{displaymath} \Pi(\mathbf{H}) = (\infty,1)Topos(\mathbf{H}, PSh(-)) \end{displaymath} on an $(\infty,1)$-topos $\mathbf{H}$ is the \textbf{shape} of $\mathbf{H}$. \end{udef} Here \begin{itemize}% \item [[(∞,1)Topos]] is the [[(∞,1)-category]] of [[(∞,1)-topos]]es; \item [[∞Grpd]] is the $(\infty,1)$-category of [[∞-groupoid]]s; \item $Y$ is the [[(∞,1)-Yoneda embedding]]; \item $Func(-,-)$ is the [[(∞,1)-category of (∞,1)-functors]]; \item $AccLex(-,-) \subset (\infty,1)Func(-,-)$ is the full [[sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-functors]] on those which are left [[exact functor]]s (preserve finite [[(∞,1)-limit]]s) and also [[accessible (∞,1)-functor|accessible]]. \item $PSh(-) : \infty Grpd \to (\infty,1)Topos$ is the functor that produces the [[(∞,1)-category of (∞,1)-presheaves]] $Func(X^{op}, \infty Grpd)$ on $X$ (equivalently on the equivalent [[opposite (∞,1)-category|opposite ∞-groupoid]] $X^{op}$); \item $Pro \infty Grpd$ is the [[pro-object in an (∞,1)-category|(∞,1)-category of pro-objects]] in $\infty Grpd$. \end{itemize} That this does indeed land in accessible left exact functors is shown below. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Notice that for every [[(∞,1)-topos]] $\mathbf{H}$ there is a unique [[geometric morphism]] \begin{displaymath} (LConst \dashv \Gamma) : \mathbf{H} \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} where [[∞Grpd]] is the $(\infty,1)$-topos of [[∞-groupoids]], $\Gamma$ is the [[global section]]s [[(∞,1)-functor]] and $LConst$ is the [[constant ∞-stack]] functor. \begin{uprop} The \textbf{shape} of $\mathbf{H}$ is the composite functor \begin{displaymath} \Pi(\mathbf{H}) := \Gamma \circ LConst \;\;:\;\; \infty Grpd \stackrel{LConst}{\to} \mathbf{H} \stackrel{\;\;\Gamma\;\;}{\to} \infty Grpd \end{displaymath} regarded as an object \begin{displaymath} \Pi(\mathbf{H}) \in Pro(\infty Grpd) = Lex(\infty Grpd, \infty Grpd)^{op} \,. \end{displaymath} \end{uprop} \begin{proof} For $X \in$ [[∞Grpd]] we have by the [[(∞,1)-Grothendieck construction]]-theorem and using that up to equivalence every morphism of $\infty$-groupoids is a [[Cartesian fibration]] (see there) that \begin{displaymath} Func(X,\infty Grpd) \simeq \infty Grpd/X \end{displaymath} is the [[over-(∞,1)-category]]. Moreover, by the we have that the terminal geometric morphism $Hom(*,-): [X, \infty Grpd] \to \infty Grpd$ is the canonical projection $\infty Grpd/ X \to \infty Grpd$. This means that it is an [[etale geometric morphism]]. So for any [[geometric morphism]] $f : \mathbf{H} \to [X, \infty Grpd]$ we have a system of [[adjoint (∞,1)-functor]]s \begin{displaymath} (LConst \dashv \Gamma) : \mathbf{H} \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} \infty Grpd/X \stackrel{\overset{\pi^*}{\leftarrow}}{\underset{\pi_*}{\to}} \infty Grpd \,. \end{displaymath} whose composite is the [[global section]] geometric morphism as indicated, because that is terminal. Notice that in $\infty Grpd/X$ there is a canonical morphism \begin{displaymath} (* \to \pi^* X) := (X \stackrel{(Id,Id)}{\to} X \times X) \,. \end{displaymath} The image of this under $f^*$ is (using that this preserves the terminal object) a morphism \begin{displaymath} * \to f^* \pi^* X = LConst X \end{displaymath} in $\mathbf{H}$. Conversely, given a morphism of the form $* \to LConst X$ in $\mathbf{H}$ we obtain the [[base change geometric morphism]] \begin{displaymath} \mathbf{H} \simeq \mathbf{H}/* \to \mathbf{H}/LConst X \stackrel{\Gamma}{\to} \infty Grpd/X \,. \end{displaymath} One checks that these constructions establish an equivalence \begin{displaymath} (\infty,1)Topos(\mathbf{H}, \infty Grpd/X) \simeq \mathbf{H}(*, LConst X) \,. \end{displaymath} Using this, we see that \begin{displaymath} \begin{aligned} \Pi (\mathbf{H}) : X \mapsto & (\infty,1)Topos(\mathbf{H}, X) \\ & \simeq \mathbf{H}(*,LConst X) \\ & \simeq \mathbf{H}(LConst *, LConst X) \\ & \simeq \infty Grpd(*, \Gamma LConst X) \\ & \simeq \Gamma LConst X \end{aligned} \,. \end{displaymath} \end{proof} \begin{uremark} In particular this does show that $\Pi(\mathbf{H}) : \infty Grpd \to \infty Grpd$ does preserve finite $(\infty,1)$-limits, since $\Gamma$ preserves all limits and $LConst$ is a left [[exact functor]]. It also shows that it is accessible, since $\Gamma$ and $LConst$ are both accessible. \end{uremark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{shape_of_a_locally_connected_topos}{}\subsubsection*{{Shape of a locally $\infty$-connected topos}}\label{shape_of_a_locally_connected_topos} Suppose that $\mathbf{H}$ is [[locally ∞-connected (∞,1)-topos|locally ∞-connected]], meaning that $\LConst$ has a left adjoint $\Pi$ which constructs the [[geometric homotopy groups in an (∞,1)-topos|homotopy ∞-groupoids]] of objects of $\mathbf{H}$. Then $\Shape(\mathbf{H})$ is [[representable functor|represented]] by $\Pi(*)\in \infty Grpd$, for we have the following sequence of [[natural equivalence|natural]] [[equivalences of ∞-groupoids]]: \begin{displaymath} \begin{aligned} Shape(\mathbf{H})(A) &\simeq \Gamma(LConst(A))\\ &\simeq Hom_{\infty Grpd}(*, \Gamma(LConst(A)))\\ &\simeq Hom_{\mathbf{H}}(LConst(*), LConst(A)) \\ &\simeq Hom_{\mathbf{H}}(*, LConst(A)) \\ &\simeq Hom_{\infty Grpd}(\Pi(*),A). \end{aligned} \end{displaymath} Thus, if we regard $\Pi(*)$ as ``the [[fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos|fundamental ∞-groupoid]] of $\mathbf{H}$'' --- which is reasonable since when $\mathbf{H}=Sh(X)$ consists of sheaves on a locally contractible [[topological space]] $X$, $\Pi_{\mathbf{H}}(*)$ is equivalent to the usual [[fundamental ∞-groupoid]] of $X$ --- then we can regard the shape of an $(\infty,1)$-topos as a generalized version of the ``homotopy $\infty$-groupoid'' which nevertheless makes sense even for non-locally-contractible toposes, by taking values in the larger category of ``pro-$\infty$-groupoids.'' It follows also that $\mathbf{H}$ is not only locally ∞-connected but also [[∞-connected (∞,1)-topos|∞-connected]], then it has the shape of a point. \hypertarget{shape_of_a_topological_space}{}\subsubsection*{{Shape of a topological space}}\label{shape_of_a_topological_space} For a discussion of how the $(\infty,1)$-topos theoretic shape of $Sh_{(\infty,1)}(X)$ relates to the ordinary shape-theoretic \emph{strong shape} of the topological space $X$ see [[shape theory]]. \hypertarget{Retract}{}\subsubsection*{{Shape of an essential retract}}\label{Retract} The following is trivial to observe, but may be useful to note. \begin{ulemma} Let $(f_! \dashv f^* \dashv f_*) : \mathbf{H} \stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}}} \mathbf{B}$ be an [[essential geometric morphism]] of $(\infty,1)$-toposes that exhibits $\mathbf{B}$ as an essential [[retract]] of $\mathbf{H}$ in that \begin{displaymath} (Id \dashv Id) \;\; \simeq \;\; \mathbf{B} \stackrel{\overset{f_!}{\leftarrow}}{\underset{f^*}{\to}} \mathbf{H} \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} \mathbf{B} \,. \end{displaymath} Then the shape of $\mathbf{B}$ is equivalent to that of $\mathbf{H}$. \end{ulemma} \begin{proof} Since $\infty Grpd$ is the [[terminal object]] in the category of Grothendieck $(\infty,1)$-toposes and [[geometric morphisms]], we have \begin{displaymath} \begin{aligned} (\infty Grpd \stackrel{LConst_{\mathbf{B}}}{\to} \mathbf{B} \stackrel{\Gamma_\mathbf{B}}{\to} \infty Grpd) &\simeq (\infty Grpd \stackrel{LConst_{\mathbf{B}}}{\to} \mathbf{B} \stackrel{f^*}{\to} \mathbf{H} \stackrel{f_*}{\to} \mathbf{B} \stackrel{\Gamma_\mathbf{B}}{\to} \infty Grpd) \\ &\simeq (\infty Grpd \stackrel{LConst_\mathbf{H}}{\to} \mathbf{H} \stackrel{\Gamma_\mathbf{H}}{\to} \infty Grpd) \end{aligned} \,. \end{displaymath} \end{proof} \begin{uexample} Every \begin{itemize}% \item [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] and [[∞-connected (∞,1)-topos]] \item and hence also every [[cohesive (∞,1)-topos]] \end{itemize} over $\infty Grpd$ has the shape of the point. \end{uexample} \begin{proof} By definition $\mathbf{H}$ is $\infty$-connected if the [[constant ∞-stack]] [[inverse image]] $f^* = L Const$ is \begin{enumerate}% \item not only a left but also a [[right adjoint]]; \item is a [[full and faithful (∞,1)-functor]]. \end{enumerate} By standard properties of [[adjoint (∞,1)-functor]]s we have that a [[right adjoint]] $f^*$ is a [[full and faithful (∞,1)-functor]] precisely if the counit $f_! f^* \to Id$ is an [[equivalence in a quasi-category|equivalence]]. Equivalently, we can observe that a locally ∞-connected (∞,1)-topos is ∞-connected precisely when $\Pi$ preserves the terminal object, and apply the above observation that the shape of a locally ∞-connected (∞,1)-topos is represented by $\Pi(*)$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{shape of an $(\infty,1)$-topos} \item [[coshape of an (∞,1)-topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition of shape of $(\infty,1)$-toposes as $\Gamma \circ LConst$ is due to \begin{itemize}% \item [[Bertrand Toen]], [[Gabriele Vezzosi]], \emph{Segal topoi and stacks over Segal categories} , in Proceedings of the Program \emph{Stacks, Intersection theory and Non-abelian Hodge Theory} , MSRI, Berkeley, January-May 2002 (\href{http://arxiv.org/abs/math/0212330}{arXiv:math/0212330}). \end{itemize} This and the relation to [[shape theory]], more precisely the [[strong shape]], of topological spaces is further discussed in section 7.1.6 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} See also \begin{itemize}% \item [[Marc Hoyois]], \emph{Higher Galois theory} (\href{http://math.mit.edu/~hoyois/papers/highergalois.pdf}{pdf}). \end{itemize} [[!redirects shape of an (∞,1)-topos]] \end{document}