\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{GeneralDefinitionInComponents}{General definition in components}\dotfill \pageref*{GeneralDefinitionInComponents} \linebreak \noindent\hyperlink{GeneralDefinitionAbstractly}{General definition abstractly}\dotfill \pageref*{GeneralDefinitionAbstractly} \linebreak \noindent\hyperlink{characterizations_over_special_sites}{Characterizations over special sites}\dotfill \pageref*{characterizations_over_special_sites} \linebreak \noindent\hyperlink{CharacterizationsOverSitesOfOpens}{Characterizations over sites of opens}\dotfill \pageref*{CharacterizationsOverSitesOfOpens} \linebreak \noindent\hyperlink{CharacterizationOverCanonicalTopologies}{Characterization over canonical topologies}\dotfill \pageref*{CharacterizationOverCanonicalTopologies} \linebreak \noindent\hyperlink{sheaves_and_localization}{Sheaves and localization}\dotfill \pageref*{sheaves_and_localization} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[presheaf]] on a [[site]] is a \emph{sheaf} if its value on any object of the site is given by its compatible values on any [[covering]] of that object. See also \begin{itemize}% \item [[motivation for sheaves, cohomology and higher stacks]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are several equivalent ways to characterize sheaves. We start with the general but explicit componentwise definition and then discuss more [[category theory|general abstract]] equivalent reformulations. Finally we give special discussion applicable in various common special cases. \hypertarget{GeneralDefinitionInComponents}{}\subsubsection*{{General definition in components}}\label{GeneralDefinitionInComponents} The following is an explicit component-wise definition of sheaves that is fully general (for instance not assuming that the [[site]] has [[pullback]]s). \begin{defn} \label{GeneralComponentwiseDefinition}\hypertarget{GeneralComponentwiseDefinition}{} Let $(C,J)$ be a [[site]] in the form of a [[small category]] $C$ equipped with a [[coverage]] $J$. A [[presheaf]] $A \in PSh(C)$ is a \textbf{sheaf} with respect to $J$ if \begin{itemize}% \item for every [[covering]] family $\{p_i : U_i \to U\}_{i \in I}$ in $J$ \item and for every \emph{[[matching family|compatible family]] of elements}, given by tuples $(s_i \in A(U_i))_{i \in I}$ such that for all $j,k \in I$ and all [[morphisms]] $U_j \stackrel{f}{\leftarrow} K \stackrel{g}{\to} U_k$ in $C$ with $p_j \circ f = p_k \circ g$ we have $A(f)(s_j) = A(g)(s_k) \in A(K)$ \end{itemize} then \begin{itemize}% \item there is a \emph{unique} element $s \in A(U)$ such that $A(p_i)(s) = s_i$ for all $i \in I$. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} If in the above definition there is \emph{at most} one such $s$, we say that $A$ is a [[separated presheaf]] with respect to $J$. \end{remark} In this form the definition appears for instance in (\hyperlink{Johnstone}{Johnstone, def. C2.1.2}).- \hypertarget{GeneralDefinitionAbstractly}{}\subsubsection*{{General definition abstractly}}\label{GeneralDefinitionAbstractly} We now reformulate the \hyperlink{GeneralComponentwiseDefinition}{above component-wise definition} in [[category theory|general abstract]] terms. Write \begin{displaymath} j : C \hookrightarrow PSh(C) \end{displaymath} for the [[Yoneda embedding]]. \begin{defn} \label{}\hypertarget{}{} Given a [[covering]] family $\{f_i : U_i \to U\}$ in $J$, its \textbf{[[sieve]]} is the presheaf $S(\{U_i\})$ defined as the [[coequalizer]] \begin{displaymath} \coprod_{j,k} j(U_j) \times_{j(U)} j(U_k) \stackrel{\overset{}{\to}}{\to} \coprod_i j(U_i) \to S(\{U_i\}) \end{displaymath} in $PSh(C)$. \end{defn} Here the [[coproduct]] on the left is over the [[pullbacks]] \begin{displaymath} \itexarray{ j(U_j) \times_{j(U)} j(U_k) &\stackrel{p_j}{\to}& j(U_j) \\ {}^{\mathllap{p_k}}\downarrow && \downarrow^{\mathrlap{j(f_j)}} \\ j(U_k) &\stackrel{j(f_k)}{\to}& j(U) } \end{displaymath} in $PSh(C)$, and the two morphisms between the coproducts are those induced componentwise by the two projections $p_j, p_k$ in this pullback diagram. \begin{remark} \label{}\hypertarget{}{} Using that [[limits]] and [[colimits]] in a [[category of presheaves]] are computed objectwise, we find that the [[sieve]] $S(\{U_i\})$ defined this way is the presheaf that sends any $K \in C$ to the set of [[morphisms]] $K \to U$ in $C$ that factor through one of the $f_i$. \end{remark} \begin{remark} \label{}\hypertarget{}{} For every [[covering]] family there is a canonical morphism \begin{displaymath} i_{\{U_i\}} : S(\{U_i\}) \to j(U) \end{displaymath} that is induced by the [[universal property]] of the [[coequalizer]] from the morphisms $j(f_i) : j(U_i) \to j(U)$ and $j(U_j) \times_{j(U)} j(U_k) \to J(U)$. \end{remark} \begin{defn} \label{}\hypertarget{}{} A \textbf{sheaf} on $(C,J)$ is a [[presheaf]] $A \in PSh(C)$ that is a [[local object]] with respect to all $i_{\{U_i\}}$: an object such that for all [[covering]] families $\{f_i : U_i \to U\}$ in $J$ we have that the [[hom-functor]] $PSh_C(-,A)$ sends the canonical morphisms $i_{\{U_i\}} : S(\{U_i\}) \to j(U)$ to [[isomorphisms]]. \begin{displaymath} PSh_C(i_{\{U_i\}}, A) : PSh_C(j(U), A) \stackrel{\simeq}{\to} PSh_C(S(\{U_i\}), A) \,. \end{displaymath} \end{defn} Equivalently, using the [[Yoneda lemma]] and the fact that the [[hom-functor]] $PSh_C(-,A)$ sends [[colimits]] to [[limits]], this says that the diagram \begin{displaymath} A(U) \to \prod_i A(U_i) \stackrel{\to}{\to} \prod_{j,k} PSh_C(j(U_j) \times_{j(U)} j(U_k), A) \end{displaymath} is an [[equalizer]] diagram for each covering family. This is also called the \textbf{[[descent]] condition} for descent along the covering family. \begin{remark} \label{}\hypertarget{}{} For many examples of sites that appear in practice -- but by far not for all -- it happens that the pullback presheaves $j(U_j) \times_{j(U)} \times j(U_k)$ are themselves again representable, hence that the [[pullback]] $U_j \times_U U_k$ exists already in $C$, even before passing to the [[Yoneda embedding]]. In this special case we may apply the [[Yoneda lemma]] once more to deduce \begin{displaymath} PSh_C(j(U_j) \times_{j(U)} j(U_k), A) \simeq A(U_j \times_U U_k) \,. \end{displaymath} Then the sheaf condition is that all diagrams \begin{displaymath} A(U) \to \prod_i A(U_i) \stackrel{\to}{\to} \prod_{j,k} A(U_j \times_U U_k) \end{displaymath} are [[equalizer]] [[diagram]]s. \end{remark} \begin{prop} \label{}\hypertarget{}{} The condition that $PSh_C(S(\{U_i\}), A)$ is an [[isomorphism]] is equivalent to the condition that the set $A(U)$ is isomorphic to the set of [[matching families]] $(s_i \in A(U_i))$ as it appears in the \hyperlink{GeneralComponentwiseDefinition}{above component-wise definition}. \end{prop} \begin{proof} We may express the set of [[natural transformation]]s $PSh_C(j(U_j) \times_{j(U)} j(U_k), A)$ (as described there) by the [[end]] \begin{displaymath} PSh_C(j(U_j) \times_{j(U)} j(U_k), A) \simeq \int_{K \in C} Set( C(K,U_j) \times_{C(K,U)} C(K,U_k) , A(K)) \,. \end{displaymath} Using this in the expression of the [[equalizer]] \begin{displaymath} \prod_i A(U_i) \simeq \prod_i \int_{K \in C} Set( C(K,U_i), A(K)) \stackrel{\to}{\to} \prod_{j,k} \int_{K \in C} Set( C(K,U_j) \times_{C(K,U)} C(K,U_k) , A(K)) \end{displaymath} as a [[subset]] of the product set on the left manifestly yields the componenwise definition above. \end{proof} \begin{defn} \label{}\hypertarget{}{} A \textbf{morphism of sheaves} is just a morphism of the underlying presheaves. So the [[category of sheaves]] $Sh_J(C)$ is the [[full subcategory]] of the [[category of presheaves]] on the sheaves: \begin{displaymath} Sh_J(C) \hookrightarrow PSh(C) \end{displaymath} \end{defn} \hypertarget{characterizations_over_special_sites}{}\subsubsection*{{Characterizations over special sites}}\label{characterizations_over_special_sites} We discuss equivalent characterizations of sheaves that are applicable if the underlying [[site]] enjoys certain special properties. \hypertarget{CharacterizationsOverSitesOfOpens}{}\paragraph*{{Characterizations over sites of opens}}\label{CharacterizationsOverSitesOfOpens} An important special case of sheaves is those over a [[(0,1)-site]] such as a [[category of open subsets]] $Op(X)$ of a [[topological space]] $X$. We consider some equivalent ways of characterizing sheaves among presheaves in such a situation. (The following was mentioned in Peter LeFanu Lumsdaine's comment \href{http://mathoverflow.net/questions/23268/geometric-intuition-for-limits/23276#23276}{here}). \begin{prop} \label{AsContinuousFunctorOverOpenSubsets}\hypertarget{AsContinuousFunctorOverOpenSubsets}{} Suppose $Op = Op(X)$ is the [[category of open subsets]] of some [[topological space]] regarded as a [[site]] with the canonical [[coverage]] where $\{U_i \hookrightarrow U\}$ is [[covering]] if the [[union]] $\cup_i U_i \simeq U$ in $Op$. Then a [[presheaf]] $\mathcal{F}$ on $Op$ is a \textbf{sheaf} precisely if for every [[complete category|complete]] [[subcategory|full subcategory]] $\mathcal{U} \hookrightarrow Op$, $\mathcal{F}$ takes the [[colimit]] in $Op$ over $\mathcal{U} \hookrightarrow Op$ to a [[limit]]: \begin{displaymath} \mathcal{F}(\underset{\to}{lim} \mathcal{U}) \simeq \underset{\leftarrow}{lim} \mathcal{F}(\mathcal{U}) \,. \end{displaymath} \end{prop} \begin{proof} A complete full subcategory $\mathcal{U} \hookrightarrow Op$ is a collection $\{U_i \hookrightarrow X\}$ of [[open subsets]] that is closed under forming [[intersections]] of subsets. The [[colimit]] \begin{displaymath} \underset{\to}{\lim} (\mathcal{U} \hookrightarrow Op) \simeq \cup_{i \in I} U_i \end{displaymath} is the [[union]] $U \coloneqq \cup_{i \in I} U_i$ of all these open subsets. Notice that by construction the component maps $\{U_i \hookrightarrow U\}$ of the colimit are a [[covering]] family of $U$. Inspection then shows that the [[limit]] $\underset{\leftarrow}{\lim}_{i \in I} \mathcal{F}(U_i)$ is the corresponding set of [[matching families]] (use the description of \href{http://ncatlab.org/nlab/show/limit#ConstructionFromProductsAndEqualizers}{limits in terms of products and equalizers} ). Hence the statement follows with def. \ref{GeneralComponentwiseDefinition}. \end{proof} \hypertarget{CharacterizationOverCanonicalTopologies}{}\paragraph*{{Characterization over canonical topologies}}\label{CharacterizationOverCanonicalTopologies} The above prop. \ref{AsContinuousFunctorOverOpenSubsets} shows that often sheaves are characterized as contravariant functors that take some [[colimits]] to [[limits]]. This is true in full generality for the following case \begin{prop} \label{AsContinuousFunctorsOnCanonicalTopology}\hypertarget{AsContinuousFunctorsOnCanonicalTopology}{} Let $\mathcal{T}$ be be a [[topos]], regarded as a [[large site]] when equipped with the [[canonical topology]]. Then a [[presheaf]] (with values in [[small sets]]) on $\mathcal{T}$ is a sheaf precisely if it sends all [[colimits]] to [[limits]]. \end{prop} \hypertarget{sheaves_and_localization}{}\subsection*{{Sheaves and localization}}\label{sheaves_and_localization} We now describe the derivation and the detailed description of various aspects of sheaves, the [[descent]] condition for sheaves and [[sheafification]], relating it to all the related notions \begin{itemize}% \item [[geometric embedding]] \begin{itemize}% \item [[localization]] \item [[homotopy category]] \end{itemize} \item [[coverage]] \begin{itemize}% \item [[Grothendieck topology]] \item [[Lawvere-Tierney topology]] \end{itemize} \item [[local isomorphism]] \begin{itemize}% \item [[sieve]] \begin{itemize}% \item [[cover]] \item [[hypercover]] \end{itemize} \item [[dense monomorphism]] \item [[local epimorphism]] \end{itemize} \end{itemize} We start by assuming that a [[geometric embedding]] into a [[presheaf]] category is given and derive the consequences. So let $S$ be a [[small category]] and write $PSh(S) = PSh_S = [S^{op}, Set]$ for the corresponding [[topos]] of [[presheaf|presheaves]]. Assume then that another topos $Sh(S) = Sh_S$ is given together with a [[geometric embedding]] \begin{displaymath} f : Sh(S) \to PSh(S) \end{displaymath} i.e. with a [[full and faithful functor]] \begin{displaymath} f_* : Sh(S) \to PSh(S) \end{displaymath} and a left [[exact functor]] \begin{displaymath} f^* : PSh(S) \to Sh(S) \end{displaymath} Such that both form a pair of [[adjoint functor]]s \begin{displaymath} f^* \dashv f_* \end{displaymath} with $f^*$ [[left adjoint]] to $f_*$. Write $W$ for the category \begin{displaymath} Core(PSh(S)) \hookrightarrow W \hookrightarrow PSh(S) \end{displaymath} consisting of all those morphisms in $PSh(S)$ that are sent to [[isomorphism]]s under $f^*$. \begin{displaymath} W = (f^*)^{-1}(Core(Sh_S)) \,. \end{displaymath} From the discussion at [[geometric embedding]] we know that $Sh(S)$ is equivalent to the full [[subcategory]] of $PSh(S)$ on all $W$-[[local object]]s. Recall that an object $A \in PSh(S)$ is called a $W$-[[local object]] if for all $p : Y \to X$ in $W$ the morphism \begin{displaymath} p^* : PSh_S(X,A) \to PSh_S(Y,A) \end{displaymath} is an [[isomorphism]]. This we call the [[descent]] condition on presheaves (saying that a presheaf ``descends'' along $p$ from $Y$ ``down to'' $X$). Our task is therefore to identify the category $W$, show how it determines and is determed by a [[Grothendieck topology]] on $S$ -- equipping $S$ with the structure of a [[site]] -- and characterize the $W$-[[local object]]s. These are (up to equivalence of categories) the objects of $Sh$, i.e. the sheaves with respect to the given [[Grothendieck topology]]. \begin{ulemma} A morphism $Y \to X$ is in $W$ if and only if for every [[representable functor|representable presheaf]] $U$ and every morphism $U\to X$ the pullback $Y \times_X U \to U$ is in $W$ \begin{displaymath} \itexarray{ Y \times_X U &\to& Y \\ \downarrow^{\in W} && \downarrow^{\Leftrightarrow \in W} \\ U &\to& X } \,. \end{displaymath} \end{ulemma} \begin{proof} Since $W$ is stable under [[pullback]] (as described at [[geometric embedding]]: simply because $f^*$ preserves finite limits) it is clear that $Y \times_X U \to U$ is in $W$ if $Y \to X$ is. To get the other direction, use the [[co-Yoneda lemma]] to write $X$ as a [[colimit]] of [[representable functor|representables]] over the [[comma category]] $(Y/const_X)$ (with $Y$ the [[Yoneda embedding]]): \begin{displaymath} X \simeq colim_{U_i \to X} U_i \,. \end{displaymath} Then pull back $Y \to colim_{U_i \to X} U$ over the entire colimiting cone, so that over each component we have \begin{displaymath} \itexarray{ Y \times_X U_i &\to& Y \\ \downarrow && \downarrow \\ U_i &\to& X } \,. \end{displaymath} Using that in $PSh(S)$ [[commutativity of limits and colimits|colimits are stable under base change]] we get \begin{displaymath} colim_i (Y \times_X U_i) \simeq (colim_i U_i) \times_X Y \,. \end{displaymath} But since $X \simeq colim_i U_i$ the right hand is $X \times_X Y$, which is just $Y$. So $Y = colim_i (Y \times_X U_i)$ and we find that $Y \to X$ is a morphism of colimits. But under $f^*$ the two respective diagrams become isomorphic, since $Y \times_X U_i \to U_i$ is in $W$. That means that the corresponding morphism of colimits $f^*(Y \to X)$ (since $f^*$ preserves colimits) is an isomorphism, which finally means that $Y \to X$ is in $W$. \end{proof} \begin{ulemma} A presheaf $A \in PSh(S)$ is a [[local object]] with respect to all of $W$ already if it is local with respect to those morphisms in $W$ whose codomain is [[representable functor|representable]] \end{ulemma} \begin{proof} Rewriting the morphism $Y \to X$ in $W$ in terms of colimits as in the above proof \begin{displaymath} \itexarray{ colim_{U \to X} U_i \times_X Y &\stackrel{\simeq}{\to}& Y \\ \downarrow && \downarrow \\ colim_{U \to X} U &\stackrel{\simeq}{\to}& X } \end{displaymath} we find that $A(X) \to A(Y)$ equals \begin{displaymath} lim_{U \to X} (A(U) \to A(U \times_X Y)) \,. \end{displaymath} If $A$ is local with respect to morphisms $W$ with representable codomain, then by the above if $Y \to X$ is in $W$ all the morphisms in the limit here are isomorphisms, hence \begin{displaymath} \cdots = Id_{A(X)} \,. \end{displaymath} \end{proof} \begin{ulemma} Every morphism $Y \to X$ in $W \subset PSh(S)$ factors as an epimorphism followed by a monomorphism in $PSh(S)$ with both being morphisms in $W$. \end{ulemma} \begin{proof} Use factorization through [[image]] and [[coimage]], use exactness of $f^*$ to deduce that the factorization exists not only in $PSh(S)$ but even in $W$. More in detail, given $Y \to X$ we get the diagram \begin{displaymath} \itexarray{ Y \times_X Y &&\to&& Y \\ &&& \swarrow \\ \downarrow &&Y \sqcup_{Y \times_X Y} Y && \downarrow \\ & \nearrow && \searrow \\ Y && \to && X } \,. \end{displaymath} Because $f^*$ is exact, the pullbacks and pushouts in this diagram remain such under $f^*$. But since $f^*(Y \to X)$ is an isomorphism by assumption, the all these are pullbacks and pushouts along isomorphisms in $Sh(S)$, so all morphisms in the above diagram map to isomorphisms in $Sh(S)$, hence the entire diagram in $PSh(S)$ is in $W$. Since the morphism $Y \sqcup_{Y \times_X Y} Y \to X$ out of the [[coimage]] is at the same time the [[equalizer|equalizing]] morphism into the [[image]] $lim(X \stackrel{\to}{\to} X \sqcup_Y X)$, it is a [[monomorphism]]. \end{proof} \begin{udefinition} The monomorphisms in $PSh(S)$ which are in $W$ are called [[dense monomorphism]]s. \end{udefinition} \begin{ulemma} Every [[monomorphism]] $Y \to X$ with $X$ [[representable functor|representable]] is of the form \begin{displaymath} Y = colim ( U \times_X U \to U ) \end{displaymath} for $U = \sqcup_{\alpha} U_\alpha$ a disjoint union of representables \end{ulemma} \begin{proof} This is a direct consequence of the standard fact that subfunctors are in bijection with [[sieve]]s. \end{proof} \begin{ucorollary} If a presheaf $A$ is [[local object|local]] with respect to all [[dense monomorphism]]s, then it is already local with respect to all morphisms $Y \to X$ of the form \begin{displaymath} \itexarray{ Y \\ \downarrow \\ X } = colim \left( \itexarray{ W &\stackrel{\to}{\to}& U \\ \;\;\downarrow^{dense mono} && \downarrow^{Id} \\ U \times_X U & \stackrel{\to}{\to}& U } \right) \end{displaymath} with the left vertical morphism a [[dense monomorphism]] (and with $U = \sqcup_\alpha U_\alpha$ the disjoint union (of representable presheaves) over a [[cover]]ing family of objects.) \end{ucorollary} \begin{udefinition} The morphisms in $W$ with representable codomain \begin{itemize}% \item of the form $colim (U \times_X U \stackrel{\to}{\to} U) \to X$ as above are [[cover]]s: \item of the form $colim (W \stackrel{\to}{\to} U) \to X$ (with $W$ a cover of $U \times_X U$) as above are [[hypercover]]s \end{itemize} of the representable $X$. \end{udefinition} \begin{uproposition} A presheaf $A$ is $W$-local, i.e. a sheaf, already if it is local (satisfies [[descent]]) with respect to all [[cover]]s, i.e. all [[dense monomorphism]]s with codomain a [[representable functor|representable]]. \end{uproposition} \begin{quote}% [[Urs Schreiber|Urs]]: the above shows this almost. I am not sure yet how to see the remaining bit directly, without making recourse to the full machinery leading up to section VII, 4, corollary 7 in [[Sheaves in Geometry and Logic]]. \end{quote} So we finally conclude: \begin{ucorollary} We have: \begin{itemize}% \item Systems $W$ of weak equivalences defined by choice of [[geometric embedding]] $f : Sh(S) \to PSh(S)$ are in canonical bijection with choice of [[Grothendieck topology]]. \item A presheaf $A$ is $W$-local, i.e. local with respect to all [[local isomorphism]]s, if and only if it is local already with respect to all [[dense monomorphism]], i.e. if and only if it satisfies sheaf condition for all covering [[sieve]]s. \end{itemize} \end{ucorollary} From the \emph{assumption} that $f : Sh(S) \to PSh(S)$ is a [[geometric embedding]] follows at once the following explicit description of the [[sheafification]] functor $f^* : PSh(S) \to Sh(S)$. \begin{ulemma} For $A \in PSh(S)$ a presheaf, its [[sheafification]] $\bar A := f_* f^* A$ is the presheaf given by \begin{displaymath} \bar A : U \mapsto colim_{(Y \to U) \in W} A(Y) \end{displaymath} \end{ulemma} \begin{proof} By the discussion at [[geometric embedding]] the category $Sh(S)$ is equivalent to the [[localization]] $PSh(S)[W^{-1}]$, which in turn is the category with the same objects as $PSh(S)$ and with morphisms given by spans out of hypercovers in $W$ \begin{displaymath} PSh(S)[W^{-1}](X,A) = colim_{(Y \to X) \in W} A(Y) \,. \end{displaymath} So we have \begin{displaymath} \array { Sh(S) &&\stackrel{\stackrel{f_*}{\to}}{\stackrel{f^*}{\leftarrow}}& PSh(S) \\ & \searrow_{\simeq}&\Downarrow^{\simeq}& \downarrow \\ && PSh(S)[W^{-1}] \,. } \end{displaymath} and deduce \begin{itemize}% \item by [[Yoneda lemma|Yoneda]] that $\bar A(U) = PSh_S(U, \bar A)$; \item by the [[adjoint functor|hom-adjunction]] this is $\cdots \simeq Sh_S(\bar U, \bar A)$; \item by the equivalence just mentioned this is $\cdots \simeq PSh_S[W^{-1}](U,A)$. \end{itemize} \end{proof} \begin{uremark} For checking the sheaf condition the [[dense monomorphism]]s, i.e. the ordinary [[cover]]s are already sufficient. But for [[sheafification]] one really needs the [[local isomorphism]]s, i.e. the [[hypercover]]s. If one takes the colimit in the sheafification prescription above only over [[cover]]s, one obtains instead of sheafification the plus-construction. \end{uremark} \begin{udefinition} For $A \in PSh(S)$ a presheaf, the \textbf{plus-construction} on $A$ is the presheaf \begin{displaymath} A^+ : X \mapsto colim_{(Y \hookrightarrow X) \in W } A(Y) \end{displaymath} where the colimit is over all [[dense monomorphism]]s (instead of over all [[local isomorphism]]s as for [[sheafification]] $\bar A$). \end{udefinition} \begin{uremark} In general $A^+$ is not yet a sheaf. It is however in general closer to being a sheaf than $A$ is, namely it is a [[separated presheaf]]. But applying the plus-construction twice yields the desired sheaf \begin{displaymath} (A^+)^+ = \bar A \,. \end{displaymath} This is essentially due to the fact that in the context of ordinary sheaves discussed here, all [[hypercover]]s are already of the form \begin{displaymath} colim(W \stackrel{\to}{\to} U) \end{displaymath} for $W \to U \times_X U$ a cover. For higher [[stack]]s the hypercover is in general a longer simplicial object of covers and accordingly if one restricts to covers instead of using hypercovers one will need to use the plus-construction more and more often. \end{uremark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The archetypical example of sheaves are \emph{sheaves of [[function]]s}: \begin{itemize}% \item for $X$ a topological space, $\mathbb{C}$ a topological space and $O(X)$ the [[site]] of open subsets of $X$, the assignment $U \mapsto C(U,\mathbb{C})$ of continuous functions from $U$ to $\mathbb{C}$ for every open subset $U \subset X$ is a sheaf on $O(X)$. \item for $X$ a complex manifold and $\mathbb{C}$ a complex manifold, the assignment $U \mapsto C_{hol}{X,\mathbb{C}}$ of holomorphic functions in a sheaf. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[presheaf]] / [[separated presheaf]] / \textbf{sheaf} / [[cosheaf]] \begin{itemize}% \item [[sheafification]] \item [[abelian sheaf]], [[sheaf of abelian groups]], [[sheaf of modules]], [[quasicoherent sheaf]], [[sheaf of meromorphic functions]] \item [[locally constant sheaf]], [[constructible sheaf]] \item [[sheaf with transfer]] \end{itemize} \item [[2-sheaf]] / [[stack]] \item [[(∞,1)-sheaf]] / [[∞-stack]] \begin{itemize}% \item [[sheaf of spectra]] \end{itemize} \item [[(∞,2)-sheaf]] \item [[(∞,n)-sheaf]] \item [[abelian sheaf cohomology]] \begin{itemize}% \item [[soft sheaf]] \item [[fine sheaf]] \item [[flabby sheaf]] \end{itemize} \item [[descent]] \begin{itemize}% \item [[cover]] \item [[cohomological descent]] \item [[descent morphism]] \item [[monadic descent]], \begin{itemize}% \item [[Sweedler coring]] \item [[higher monadic descent]] \item [[descent in noncommutative algebraic geometry]] \end{itemize} \end{itemize} \end{itemize} [[!include homotopy n-types - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Section C2 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \item [[Yuri Manin]], \emph{Methods of homological algebra} \end{itemize} A concise and contemporary overview can be found in \begin{itemize}% \item C. Centazzo, [[Enrico Vitale|E. M. Vitale]], \emph{Sheaf theory} , pp.311-358 in Pedicchio, Tholen (eds.), \emph{Categorical Foundations} , Cambridge UP 2004. (\href{https://perso.uclouvain.be/enrico.vitale/chapter7.pdf}{draft}) \end{itemize} The book by Kashiwara and Schapira discusses sheaves with motivation from [[homological algebra]], [[abelian sheaf cohomology]] and [[homotopy theory]], leading over in the last chapter to the notion of [[stack]]. \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{[[Categories and Sheaves]]}, Grundlehren der Mathematischen Wissenschaften \textbf{332}, Springer (2006) \end{itemize} A quick pedagogical introduction with an eye towards the generalization to [[(∞,1)-sheaves]] is in \begin{itemize}% \item [[Dan Dugger]], \emph{Sheaves and homotopy theory}, \href{http://ncatlab.org/nlab/files/cech.pdf}{pdf} \end{itemize} Classics of sheaf theory on topological spaces are \begin{itemize}% \item Roger Godement, \emph{Topologie alg\'e{}brique et th\'e{}orie des faisceaux}, Hermann, 1958, 283 p. \href{http://books.google.fr/books/about/Topologie_alg%C3%A9brique_et_th%C3%A9orie_des_fa.html?id=JVrvAAAAMAAJ}{gBooks} \item [[A. Grothendieck]], [[Tohoku]] \end{itemize} Recently, an improvement in understanding the interplay of derived functors (inverse image and proper direct image) in sheaf theory on topological spaces has been exhibited in \begin{itemize}% \item Olaf M. Schnuerer, Wolfgang Sergel, \emph{Proper base change for separated locally proper maps}, \href{http://arxiv.org/abs/1404.7630}{arxiv/1404.7630} \end{itemize} [[!redirects sheaves]] [[!redirects 1-sheaf]] [[!redirects (1,1)-sheaf]] [[!redirects 1-sheaves]] [[!redirects (1,1)-sheaves]] \end{document}