\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sheaf and topos theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{introductions}{Introductions}\dotfill \pageref*{introductions} \linebreak \noindent\hyperlink{textbooks}{Textbooks}\dotfill \pageref*{textbooks} \linebreak \noindent\hyperlink{course_notes}{Course notes}\dotfill \pageref*{course_notes} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Topos theory} is the part of [[category theory]] that studies [[categories]] which are [[topos]]es. This includes in particular [[Grothendieck toposes]], i.e. [[categories of sheaves]]. There are always two ways to think of topos theory: as being \begin{itemize}% \item about [[logic]] \item about [[higher geometry|geometry]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{topos theory} \item [[2-topos theory]] \item [[(∞,1)-topos theory]] \item [[higher topos theory]] \item [[microlocal sheaf theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{introductions}{}\subsubsection*{{Introductions}}\label{introductions} A gentle basic introduction is \begin{itemize}% \item [[John Baez]], \href{http://math.ucr.edu/home/baez/topos.html}{Topos Theory in a Nutshell}. \end{itemize} A quick introduction of the basic facts of [[Grothendieck topos]] theory is chapter I, ``Background in topos theory'' in \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Classifying Spaces and Classifying Topoi} Lecture Notes in Mathematics 1616, Springer (1995). \end{itemize} Other introductions include \begin{itemize}% \item [[Tom Leinster]], \emph{[[Leinster2010|An informal introduction to topos theory]]} (2010) \item [[André Joyal]], \emph{[[A crash course in topos theory -- The big picture]]}, lecture series at \href{https://indico.math.cnrs.fr/event/747/}{Topos \`a{} l'IHES}, November 2015, Paris \item [[André Joyal]], \emph{Geometric aspects of topos theory in relation with logical doctrines}, talk at \emph{[[New Spaces for Mathematics and Physics]]}, IHP Paris 2015 (\href{https://www.youtube.com/watch?v=kaZpOEOAUzE}{video recording}) \end{itemize} \hypertarget{textbooks}{}\subsubsection*{{Textbooks}}\label{textbooks} The mother of it all though not exactly a textbook \begin{itemize}% \item [[Michael Artin|M.Artin]], [[Alexander Grothendieck|A.Grothendieck]], [[J. L. Verdier]] (eds.), \emph{Théorie des Topos et Cohomologie Etale des Schémas - SGA 4} , LNM \textbf{269} Springer Heidelberg 1972. \end{itemize} A still very useful reference is the monograph \begin{itemize}% \item [[Peter Johnstone]], \emph{Topos theory}, London Math. Soc. Monographs \textbf{10}, Acad. Press 1977, xxiii+367 pp. (Available as Dover Reprint, Mineola 2014) \end{itemize} This later grew into the more detailed \begin{itemize}% \item [[Peter Johnstone]], [[Elephant|Sketches of an elephant: a topos theory compendium]] \end{itemize} Maybe the standard modern textbook on Grothendieck toposes is \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} A thorough but clear first introduction to topos theory is \begin{itemize}% \item [[Francis Borceux]], \emph{Handbook of Categorical Algebra 3 - Categories of Sheaves} , Cambridge UP 1994. \end{itemize} Introducing even category theory from the scratch while still managing to cover some ground, the following textbook is the \emph{royal road to topos theory} for people with some background in [[first-order logic]]: \begin{itemize}% \item R. Goldblatt, \emph{Topoi - The Categorical Analysis of Logic} , 2nd ed. North-Holland Amsterdam 1984. (Dover reprint New York 2006; \href{http://projecteuclid.org/euclid.bia/1403013939}{project euclid}) \end{itemize} Similarly, the following monograph develops topos theory to considerable depth without categorical prerequisites \begin{itemize}% \item [[Michael Barr]], [[Charles Wells]], \emph{Toposes, Triples and Theories} , Springer Heidelberg 1985. (Available as \href{http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html}{TAC reprint no.12} 2005) \end{itemize} See also \begin{itemize}% \item [[Olivia Caramello]], \emph{Theories, Sites, Toposes}, Oxford UP 2017. \end{itemize} \hypertarget{course_notes}{}\subsubsection*{{Course notes}}\label{course_notes} A survey is in \begin{itemize}% \item [[Ross Street]], \emph{A survey of topos theory} (notes for students, 1978) \href{http://www.math.mq.edu.au/~street/ToposSurvey.pdf}{pdf} \end{itemize} A nice and concise introduction is available in \begin{itemize}% \item [[Francis Borceux]], \emph{Some glances at topos theory} , lecture notes Como 2018. (\href{http://tcsc.lakecomoschool.org/files/2018/06/Como2018.pdf}{pdf}, \href{https://www.youtube.com/watch?v=s_fN9euuVAY&list=PLh_3Q6ZRqWs0LBptMGClJ8OArR0fBT6Pp&index=11}{video playlist}) \item [[Ieke Moerdijk]], [[Jaap van Oosten]], \emph{Topos theory} Master Class notes (2007) (\href{http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf}{pdf}) \end{itemize} \hypertarget{history}{}\subsubsection*{{History}}\label{history} \begin{itemize}% \item [[F. William Lawvere]], \emph{Comments on the development of topos theory}, pp.715-734 in Pier (ed.), \emph{Development of Mathematics 1950 - 2000} , Birkh\"a{}user Basel 2000. (\href{http://www.tac.mta.ca/tac/reprints/articles/24/tr24abs.html}{tac reprint}) \item [[Colin McLarty]], \emph{The Uses and Abuses of the History of Topos Theory} , Brit. J. Phil. Sci., 41 (1990) (\href{http://www.jstor.org/stable/687825}{JSTOR}) \href{http://bjps.oxfordjournals.org/content/41/3/351.full.pdf}{PDF} \end{itemize} A historical analysis of Grothendieck's 1973 Buffalo lecture series on toposes and their precedents is in \begin{itemize}% \item [[Colin McLarty]], \emph{Grothendieck's 1973 topos lectures}, Séminaire Lectures grothendieckiennes, 3 May (2018) (\href{https://www.youtube.com/watch?v=hhWT5V0oaSI}{YouTube video}) \item \emph{\href{http://www.wra1th.plus.com/gcw/math/PSSL/index.html}{The peripatetic seminar on sheaves and logic 1976-1999}} \end{itemize} [[!redirects Sheaf and Topos Theory]] [[!redirects sheaf theory]] [[!redirects topos theory]] \end{document}