\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sheaf with transfer} [[!redirects Nisnevich sheaves with transfer]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{motivic_cohomology}{}\paragraph*{{Motivic cohomology}}\label{motivic_cohomology} [[!include motivic cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given some [[category]] ([[site]]) $S$ of test spaces, suppose one fixes some category $Corr_p(S)$ of [[correspondences]] in $S$ equipped with certain cohomological data on their correspondence space. Then a \emph{sheaf with transfer} on $S$ is a contravariant functor on $Corr_p(S)$ such that the restriction along the canonical embedding $S \to Corr_p(S)$ makes the resulting [[presheaf]] a [[sheaf]]. Traditionally this is considered for $S$ the [[Nisnevich site]] and $Corr_p(S)$ constructed from correspondences equipped with algebraic cycles as discussed at \emph{[[pure motive]]}, (e.g. \hyperlink{Voevodsky00}{Voevodsky 00, 2.1 and def. 3.1.1}). The idea is that, looking at it the other way around, the extension of a sheaf to a sheaf with transfer defines a kind of [[Umkehr map]]/[[fiber integration]] by which the sheaf is not only pulled back along maps, but also pushed forward, hence ``transferred'' (this concept of course makes sense rather generally in [[cohomology]], see e.g. \hyperlink{Piacenza84}{Piacenza 84, 1.1}). The [[derived categories]] of those [[abelian sheaves]] with transfers for the [[Nisnevich site]] with are [[A1-homotopy theory|A1-homotopy invariant]] provides a model for [[motive|motives]] known as \emph{\href{motive#VoevodskyMotives}{Voevodsky motives}} or similar (\hyperlink{Voevodsky00}{Voevodsky 00, p. 20}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} On this page we construct the category of Nisnevich sheaves with transfer over a base scheme $S$ which is assumed to be [[regular scheme|regular]] and [[noetherian scheme|noetherian]], following \hyperlink{Deglise}{D\'e{}glise}. Nisnevich sheaves with transfer play an important role in the theory of [[mixed motives]]. \begin{enumerate}% \item Let $S$ be a base [[scheme]] which is [[regular scheme|regular]] and [[noetherian scheme|noetherian]]. Let $Sm_S$ denote the category of [[schemes]] that are [[smooth]] and of [[finite type]] over $S$. For $X,Y \in \Sm_S$, one defines the group of \textbf{finite $S$-[[correspondences]]} $C_S(X, Y)$ as the [[free abelian group]] generated by closed integral subschemes $Z \subset X \times_S Y$ such that the projection $Z \to X$ is [[finite]] and [[equidimensional morphism|equidimensional]]. This defines an [[additive category]] $Sm_S^{cor}$ whose objects are the same as $Sm_S$ and whose morphisms are finite $S$-correspondences. \item Note that there is a canonical functor $\gamma_S : \Sm_S \to \Sm_S^cor$ which acts on a [[morphism]] by taking the finite correspondence induced by its [[graph]]. \item Recall that the [[fibred product]] over $S$ defines a [[symmetric monoidal structure]] on $\Sm_S$. One can check that this also induces a [[symmetric monoidal structure]] on $\Sm_S^{cor}$. The functor $\gamma_S$ respects these structures. \item Let $P_S$ (resp. $P_S^{tr}$) denote the category of [[abelian presheaves]] on $\Sm_S$ (resp. on $\Sm_S^{cor}$). Objects of $P_S^{tr}$ are called \textbf{presheaves with transfer} on $S$. We will write $L_S[X]$ for the [[presheaf]] with transfers [[representable|represented]] by an object $X \in \Sm_S$. \item Let $N_S$ denote the category of [[sheaves]] on $\Sm_S$ with respect to the [[Nisnevich topology]]. Let $N_S^{tr} \subset P_S^{tr}$ be the [[full subcategory]] spanned by [[presheaves]] $F : \Sm_S^{cor} \to Ab$ whose [[composition]] with $\gamma_S : \Sm_S \to \Sm_S^{cor}$ is a [[sheaf]] on $Sm_S$ (with respect to the [[Nisnevich topology]]). Objects of $N_S^{tr}$ are called \textbf{Nisnevich sheaves with transfer}. \item \textbf{Proposition.} The category $N_S^{tr}$ is [[cocomplete]] and [[Grothendieck abelian category|Grothendieck abelian]] with an [[essentially small]] set of [[generators]] given by the objects $L_S[X]$ for $X \in \Sm_S$. \item This allows one to define a [[symmetric monoidal structure]] on $N_S^{tr}$, which is in fact the unique one for which the functor $\Sm_S \to \N_S^{tr}$ is [[symmetric monoidal]] and $- \otimes_S^{tr} -$ preserves [[colimits]]. Given $F$ and $G$ in $N_S^{tr}$, we can write \begin{displaymath} F = \colim_{X \to F} L_S[X] ; \qquad G = \colim_{Y \to G} L_S[Y] \end{displaymath} where the [[colimits]] are taken over the family of morphisms $L_S[X] \to F$ (resp. $L_S[Y] \to G$. Then we define \begin{displaymath} F \otimes_S^{tr} G = \colim_{X \to F ; Y \to G} L_S[X \times_S Y]. \end{displaymath} \item This [[symmetric monoidal structure]] is further [[closed monoidal structure|closed]]: one defines \begin{displaymath} \underline{\Hom}_{N_S^{tr}} (F,G) (X) = \Hom_{N_S^{tr}} (F \otimes_S^{tr} L_S[X], G) \end{displaymath} for all $X \in \Sm_S$. \end{enumerate} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Becker-Gottlieb transfer]], [[transfer context]] \item [[Mackey functor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Frédéric Déglise]], \emph{Finite correspondences and transfers over a regular base}, \href{http://www.math.uiuc.edu/K-theory/0765/regular_base.pdf}{pdf}. \item [[Vladimir Voevodsky]], section 3.1 of \emph{Triangulated categories of motives over a field}, K-Theory, 74 (2000) (\href{http://math.illinois.edu/K-theory/0368/s5.pdf}{pdf}, \href{http://www.math.uiuc.edu/K-theory/0074/}{web}) \item [[Marc Levine]], section 3.2 of \emph{Six lectures on motives}, ICTP lectures 2006 (\href{http://users.ictp.it/~pub_off/lectures/lns023/Levine/Levine.pdf}{pdf}) \end{itemize} Relation to [[Mackey functors]]: \begin{itemize}% \item [[Bruno Kahn]], Takao Yamazaki, \emph{Voevodsky's motives and Weil reciprocity}, Duke Mathematical Journal 162, 14 (2013) 2751-2796 (\href{http://arxiv.org/abs/1108.2764}{arXiv:1108.2764}) \end{itemize} In the more general context of [[abelian sheaf cohomology]] a kind of ``transfer'' is discussed in \begin{itemize}% \item [[Robert Piacenza]], \emph{Transfer in generalized sheaf cohomology}, Proceedings of the AMS, Volume 90, Number 4 (1984) \end{itemize} [[!redirects sheaves with transfer]] [[!redirects sheaf with transfer]] [[!redirects sheaves with transfers]] [[!redirects sheaf with transfers]] [[!redirects presheaves with transfer]] [[!redirects presheaf with transfer]] [[!redirects presheaves with transfers]] [[!redirects presheaf with transfers]] [[!redirects Nisnevich sheaf with transfer]] \end{document}