\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{shelf} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{infinite_braid_group}{Infinite braid group}\dotfill \pageref*{infinite_braid_group} \linebreak \noindent\hyperlink{in_set_theory}{In set theory}\dotfill \pageref*{in_set_theory} \linebreak \noindent\hyperlink{action_of_positive_braid_monoid}{Action of positive braid monoid}\dotfill \pageref*{action_of_positive_braid_monoid} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{shelf} is a set with a binary operation that distributes over itself. Shelves are similar to [[racks]] (and there are forgetful functors from racks to shelves), but shelves are axiomatically simpler. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{left shelf} is a set with a binary operation $\triangleright$ obeying the left self-distributive law \begin{displaymath} a \triangleright (b \triangleright c) = (a \triangleright b)\triangleright (a \triangleright c) . \end{displaymath} Similarly a set with a binary operation $\triangleleft$ obeying the right self-distributive law is called a \textbf{right shelf}. A unital left shelf (meaning a left shelf together with an element that acts as an [[identity element|identity]] on both the left and the right) is the same as a graphic monoid: for a proof see [[graphic category]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Of course all the usual examples of [[racks]] and [[quandles]] are \emph{a fortiori} shelves. But there are notable examples not of this type. \hypertarget{infinite_braid_group}{}\subsubsection*{{Infinite braid group}}\label{infinite_braid_group} Let $B_n$ be the $n^{th}$ [[braid group]]. With the usual inclusion $B_n \to B_{n+1}$ by appending a strand to the end of a braid on $n$ strands, the colimit of the chain $B_0 \to B_1 \to B_2 \to \ldots$ is the \emph{infinite braid group} $B_\infty$. Let $sh: B_\infty \to B_\infty$ be the homomorphism that sends $\sigma_i$ to $\sigma_{i+1}$. Then there is a left distributive operation on $B_\infty$ where \begin{displaymath} a \triangleright b \coloneqq a sh(b) \sigma_1 sh(a)^{-1}. \end{displaymath} One may verify the left distributivity by a [[string diagram]] calculation (which appears on page 29 of this \href{https://books.google.com/books?id=XfsHCAAAQBAJ&pg=PA27&lpg=PA27&dq=braid+exponentiation&source=bl&ots=4ncxE2f7oT&sig=Mn-YDL97W9NWE0baexJEWrD4J4k&hl=en&sa=X&ved=0ahUKEwiB4saR3frKAhXBSiYKHbWaBEoQ6AEIHTAA#v=onepage&q=braid%20exponentiation&f=false}{Google book}, \hyperlink{Deh3}{Dehornoy3}). \hypertarget{in_set_theory}{}\subsubsection*{{In set theory}}\label{in_set_theory} Shelves make an appearance in set theory via [[large cardinal]] axioms. Let $(V, \in)$ be a model of [[ZFC]], and let $V_\lambda \subseteq V$ be the collection of elements of rank less than an [[ordinal]] $\lambda$ of $V$. One (rather strong) large cardinal axiom on (limit ordinals) $\lambda$ is: \begin{quote}% There exists an [[elementary embedding]] $j: V_\lambda \to V_\lambda$ on the [[structure]] $(V_\lambda, \in)$ that is not the identity. \end{quote} Then, for $A \subseteq V_\lambda$, put \begin{displaymath} j(A) \coloneqq \bigcup_{\alpha \lt \lambda} j(A \cap V_\alpha). \end{displaymath} If we regard $A$ as an unary relation on $V_\lambda$, then $j$ induces an elementary embedding $(V_\lambda, \in, A) \to (V_\lambda, \in, j(A))$. In particular, if $k$ is any elementary embedding $(V_\lambda, \in) \to (V_\lambda, \in)$, which as a set of ordered pairs we may regard as a subset of $V_\lambda$, then $j(k)$ as a set of ordered pairs is also an elementary self-embedding of $(V_\lambda, \in)$. We get in this way a binary operation $(j, k) \mapsto j(k)$ on elementary embeddings, which we denote as $(j, k) \mapsto j \cdot k$, and it is not difficult to verify that $\cdot$ is left self-distributive. Let $F_1$ denote the [[free object|free]] left shelf generated by 1 element. If $E_\lambda$ denotes the collection of elementary embeddings on the structure $(V_\lambda, \in)$, then the preceding observations imply that $E_\lambda$ is a left shelf, so any $j \in E_\lambda$ induces a shelf homomorphism \begin{displaymath} \phi_j: F_1 \to E_\lambda. \end{displaymath} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Laver)} If $j \in E_\lambda$ is not the identity, then $\phi_j$ is injective. \end{theorem} The famous \emph{Laver tables} (derived from set-theoretic considerations which we omit for now) describe certain [[finite set|finite]] quotients of $F_1$. Letting $x$ denote the generator of $F_1$, define $x_n$ by $x_1 = x$ and $x_{n+1} = x_n \cdot x$. The quotient of $F_1$ by the single relation $x_{m+1} = x$ is a shelf of cardinality $2^k$, the largest power of $2$ dividing $m$; it is denoted $A_k$. It can be described alternatively as the unique left shelf on the set $\{1, 2, \ldots, 2^k\}$ such that $p \cdot 1 = p + 1 \mod 2^k$ (here $p$ represents the image of $x_p$ under the quotient $F_1 \to A_k$). The ``multiplication table'' of an $A_k$ is called a Laver table. The behavior of Laver tables is largely not understood, but we mention a few facts. The first row consisting of entries $1 \cdot p$ is periodic (of some order dividing $2^k$). Under the large cardinal assumption that a nontrivial elementary self-embedding on a $V_\lambda$ exists, this period $f(k)$ tends to $\infty$ as $k$ does, but whether it does as a consequence of ZFC is not known. What \emph{is} known is that this period, even if it increases to $\infty$, does so quite slowly: if we define $g(m)$ to be the smallest $k$ such that $f(k) \geq m$, then $g$ grows more quickly than say the Ackermann function. \hypertarget{action_of_positive_braid_monoid}{}\subsection*{{Action of positive braid monoid}}\label{action_of_positive_braid_monoid} Let $B_n^+$ be the [[monoid]] of positive [[braid group|braids]], which as a monoid is presented by generators $\sigma_1, \ldots, \sigma_{n-1}$ subject to the braid relations \begin{displaymath} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \qquad \sigma_i \sigma_j = \sigma_j \sigma_i\; if \; {|i-j|} \gt 1. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} If $(X, \triangleright)$ is a shelf, then there is a monoid homomorphism $B_n^+ \to \hom(X^n, X^n)$ whose transform to an action $B_n^+ \times X^n \to X^n$ is described by the equations \begin{displaymath} \sigma_i(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) = (x_1, \ldots, x_i \triangleright x_{i+1}, x_i \ldots, x_n); \end{displaymath} conversely, if $\triangleright$ is any binary operation, then these equations describe an action of $B_n^+$ only if $\triangleright$ is left distributive. \end{prop} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[rack]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} These are some general references: \begin{itemize}% \item [[Alissa Crans]], \emph{Lie 2-Algebras}, Chapter 3.1: Shelves, Racks, Spindles and Quandles, Ph.D. thesis, U.C. Riverside, 2004. (\href{https://arxiv.org/abs/math/0409602}{pdf}). \item [[Patrick Dehornoy]], \emph{Braids and Self-Distributivity}, Progress in Mathematics 192, Birkh\"a{}user Verlag, 2000. \end{itemize} These develop the connection between the free shelf on one generator and elementary embeddings in set theory: \begin{itemize}% \item Richard Laver, The left distributive law and the freeness of an algebra of elementary embeddings, (1992), 209--231. \item Richard Laver, , (1995), 334--346. \item Randall Dougherty and Thomas Jech, , (1997), 201--241. \item Randall Dougherty, , (1993), 211--241. \item Randall Dougherty, \end{itemize} For a popularized account of this material, see: \begin{itemize}% \item John Baez, \href{https://johncarlosbaez.wordpress.com/2016/05/06/shelves-and-the-infinite/}{Shelves and the infinite}. \end{itemize} [[!redirects shelves]] [[!redirects left shelf]] [[!redirects left shelves]] [[!redirects right shelf]] [[!redirects right shelves]] [[!redirects Laver table]] [[!redirects Laver tables]] \end{document}