\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{shrinking lemma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[topology]], the ``shrinking lemma'' (lemma \ref{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained} below) states that on a [[normal topological space]] the patches of every [[locally finite cover]] may be replaced by smaller patches which still cover the space, but such that their [[topological closures]] are contained in the original patches. If there is more than a [[countable set]] of elements in the original cover, then this conclusion requires [[excluded middle]] and [[Zorn's lemma]], hence the [[axiom of choice]]. The shrinking lemma is needed in the proof that [[ paracompact Hausdorff spaces equivalently admit subordinate partitions of unity]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{lemma} \label{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained}\hypertarget{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained}{} \textbf{(shrinking lemma for locally finite covers)} Assuming the [[axiom of choice]] then: Let $X$ be a [[topological space]] which is [[normal topological space|normal]] and let $\{U_i \subset X\}_{i \in I}$ be a [[locally finite cover|locally finite]] [[open cover]]. Then there exists another open cover $\{V_i \subset X\}_{i \in I}$ such that the [[topological closure]] $Cl(V_i)$ of its elements is contained in the original patches: \begin{displaymath} \underset{i \in I}{\forall} \left( V_i \subset Cl(V_i) \subset U_i \right) \,. \end{displaymath} \end{lemma} We now \textbf{prove} this in increasing generality, first for binary open covers (lemma \ref{ShrinkingLemmaForBinaryCover} below), then for finite covers (lemma \ref{ShrinkinglemmaForFiniteCovers}), then for locally finite countable covers (lemma \ref{ShrinkingLemmaForLocallyFiniteCountableCovers}), and finally for general locally finite covers (lemma \ref{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained}, proof \hyperlink{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained}{below}). It is only the last statement that needs the [[axiom of choice]]. \begin{lemma} \label{ShrinkingLemmaForBinaryCover}\hypertarget{ShrinkingLemmaForBinaryCover}{} \textbf{(shrinking lemma for binary covers)} Let $(X,\tau)$ be a [[normal topological space]] and let $\{U_i \subset X\}_{i \in \{1,2\}}$ an [[open cover]] by two [[open subsets]]. Then there exists an open set $V_1 \subset X$ whose [[topological closure]] is contained in $U_1$ \begin{displaymath} V_1 \subset Cl(V_1) \subset U_1 \end{displaymath} and such that $\{V_1,U_2\}$ is still an open cover of $X$. \end{lemma} \begin{proof} Since $U_1 \cup U_2 = X$ it follows (by [[de Morgan's law]]) that their [[complements]] $X \backslash U_i$ are [[disjoint subset|disjoint]] [[closed subsets]]. Hence by normality of $(X,\tau)$ there exist disjoint open subsets \begin{displaymath} V_1 \supset X \backslash U_2 \phantom{AAA} V_2 \supset X \backslash U_1 \,. \end{displaymath} By their disjointness, we have the following inclusions: \begin{displaymath} V_1 \subset X \backslash V_2 \subset U_1 \,. \end{displaymath} In particular, since $X \backslash V_2$ is closed, this means that $Cl(V_1) \subset X \backslash V_2$. Hence it only remains to observe that $V_1 \cup U_2 = X$, by definition of $V_1$. \end{proof} \begin{lemma} \label{ShrinkinglemmaForFiniteCovers}\hypertarget{ShrinkinglemmaForFiniteCovers}{} \textbf{(shrinking lemma for finite covers)} Let $(X,\tau)$ be a [[normal topological space]], and let $\{U_i \subset X\}_{i \in \{1, \cdots, n\}}$ be an [[open cover]] with a [[finite number]] $n \in \mathbb{N}$ of patches. Then there exists another open cover $\{V_i \subset X\}_{i \in I}$ such that $Cl(V_i) \subset U_i$ for all $i \in I$. \end{lemma} \begin{proof} By [[induction]] using lemma \ref{ShrinkingLemmaForBinaryCover}. To begin with, consider $\{ U_1, \underoverset{i = 2}{n}{\cup} U_i\}$. This is a binary open cover, and hence lemma \ref{ShrinkingLemmaForBinaryCover} gives an open subset $V_1 \subset X$ with $V_1 \subset Cl(V_1) \subset U_1$ such that $\{V_1, \underoverset{i = 2}{n}{\cup} U_i\}$ is still an open cover, and accordingly so is \begin{displaymath} \{ V_1 \} \cup \left\{ U_i \right\}_{i \in \{2, \cdots, n\}} \,. \end{displaymath} Similarly we next find an open subset $V_2 \subset X$ with $V_2 \subset Cl(V_2) \subset U_2$ and such that \begin{displaymath} \{ V_1, ,V_2 \} \cup \left\{ U_i \right\}_{i \in \{3, \cdots, n\}} \end{displaymath} is an open cover. After $n$ such steps we are left with an open cover $\{V_i \subset X\}_{i \in \{1, \cdots, n\}}$ as required. \end{proof} \begin{remark} \label{}\hypertarget{}{} Beware that the [[induction]] in lemma \ref{ShrinkinglemmaForFiniteCovers} does \emph{not} give the statement for infinite [[countable covers]]. The issue is that it is not guaranteed that $\underset{i \in \mathbb{N}}{\cup} V_i$ is a cover. And in fact, assuming the [[axiom of choice]], then there exists a counter-example of a countable cover on a normal spaces for which the shrinking lemma fails (a [[Dowker space]] due to \hyperlink{Beslagic85}{Beslagic 85}). \end{remark} This issue is evaded if we consider [[locally finite covers]]: \begin{lemma} \label{ShrinkingLemmaForLocallyFiniteCountableCovers}\hypertarget{ShrinkingLemmaForLocallyFiniteCountableCovers}{} \textbf{(shrinking lemma for locally finite countable covers)} Let $(X,\tau)$ be a [[normal topological space]] and $\{U_i \subset X\}_{i \in \mathbb{N}}$ a [[locally finite cover|locally finite]] [[countable cover]]. Then there exists [[open subsets]] $V_i \subset X$ for $i \in \mathbb{N}$ such that $V_i \subset Cl(V_i) \subset U_i$ and such that $\{V_i \subset X\}_{i \in \mathbb{N}}$ is still a cover. \end{lemma} \begin{proof} As in the proof of lemma \ref{ShrinkinglemmaForFiniteCovers}, there exist $V_i$ for $i \in \mathbb{N}$ such that $V_i \subset Cl(V_i) \subset U_i$ and such that for every finite number, hence every $n \in \mathbb{N}$, then \begin{displaymath} \underoverset{i = 0}{n}{\cup} V_i \;=\; \underoverset{i = 0}{n}{\cup} U_i \,. \end{displaymath} Now the extra assumption that $\{U_i \subset X\}_{i \in I}$ is [[locally finite cover|locally finite]] implies that every $x \in X$ is contained in only finitely many of the $U_i$, hence that for every $x \in X$ there exists $n_x \in \mathbb{N}$ such that \begin{displaymath} x \in \underoverset{i = 0}{n_x}{\cup} U_i \,. \end{displaymath} This implies that for every $x$ then \begin{displaymath} x \in \underoverset{i = 0}{n_x}{\cup} V_i \subset \underset{i \in \mathbb{N}}{\cup} V_i \end{displaymath} hence that $\{V_i \subset X\}_{i \in \mathbb{N}}$ is indeed a cover of $X$. \end{proof} We now invoke [[Zorn's lemma]] to generalize the shrinking lemma for finitely many patches (lemma \ref{ShrinkinglemmaForFiniteCovers}) to arbitrary sets of patches: \begin{proof} of the general shrinking lemma \ref{PatchesOfOpenCoverOfNormalSpaceMayBeMadeSmallerSoThatTheirClosuresAreContained} Let $\{U_i \subset X\}_{i \in I}$ be the given locally finite cover of the normal space $(X,\tau)$. Consider the set $S$ of [[pairs]] $(J, \mathcal{V})$ consisting of \begin{enumerate}% \item a [[subset]] $J \subset I$; \item an $I$-indexed set of open subsets $\mathcal{V} = \{V_i \subset X\}_{i \in I}$ \end{enumerate} with the property that \begin{enumerate}% \item $(i \in J \subset I) \Rightarrow ( Cl(V_i) \subset U_i )$; \item $(i \in I \backslash J) \Rightarrow ( V_i = U_i )$. \item $\{V_i \subset X\}_{i \in I}$ is an open cover of $X$. \end{enumerate} Equip the set $S$ with a [[partial order]] by setting \begin{displaymath} \left( (J_1, \mathcal{V}) \leq (J_2, \mathcal{W}) \right) \Leftrightarrow \left( \left( J_1 \subset J_2 \right) \,\text{and}\, \left( \underset{i \in J_1}{\forall} \left( V_i = W_i \right) \right) \right) \,. \end{displaymath} By definition, an element of $S$ with $J = I$ is an open cover of the required form. We claim now that a [[maximal element]] $(J, \mathcal{V})$ of $(S,\leq)$ has $J = I$. For assume on the contrary that there were $i \in I \backslash J$. Then we could apply the construction in lemma \ref{ShrinkingLemmaForBinaryCover} to replace that single $V_i$ with a smaller open subset $V'_i$ to obtain $\mathcal{V}'$ such that $Cl(V'_i) \subset V_i$ and such that $\mathcal{V}'$ is still an open cover. But that would mean that $(J,\mathcal{V}) \lt (J \cup \{i\}, \mathcal{V}')$, contradicting the assumption that $(J,\mathcal{V})$ is maximal. This [[proof by contradiction|proves by contradiction]] that a maximal element of $(S,\leq)$ has $J = I$ and hence is an open cover as required. We are reduced now to showing that a maximal element of $(S,\leq)$ exists. To achieve this we invoke [[Zorn's lemma]]. Hence we have to check that every [[chain]] in $(S,\leq)$, hence every [[total order|totally ordered]] [[subset]] has an [[upper bound]]. So let $T \subset S$ be a [[total order|totally ordered]] subset. Consider the union of all the index sets appearing in the pairs in this subset: \begin{displaymath} K \;\coloneqq\; \underset{(J,\mathcal{V}) \in T }{\cup} J \,. \end{displaymath} Now define open subsets $W_i$ for $i \in K$ picking any $(J,\mathcal{V})$ in $T$ with $i \in J$ and setting \begin{displaymath} W_i \coloneqq V_i \phantom{AAA} i \in K \,. \end{displaymath} This is independent of the choice of $(J,\mathcal{V})$, hence well defined, by the assumption that $(T,\leq)$ is totally ordered. Moreover, for $i \in I\backslash K$ define \begin{displaymath} W_i \coloneqq U_i \phantom{AAA} i \in I \backslash K \,. \end{displaymath} We claim now that $\{W_i \subset X\}_{i \in I}$ thus defined is a cover of $X$. Take an arbitrary point $x \in X$. If $x \in U_i$ for some $i \notin K$, we have $U_i = W_i$ and therefore $x$ is in $\underset{i \in I}{\cup} W_i$. Otherwise, combining with the assumption that $\{U_i \subset X\}_{i \in I}$ is locally finite, the set $J_x$ of indices $i \in I$ such that $x \in U_i$ is finite and $J_x \subset K$. Since $(T,\leq)$ is a total order, it must contain an element $(J, \mathcal{V})$ such that $J_x \subset J$. And since that $\mathcal{V}$ is a cover and $x$ cannot belong to any $U_i$ with $i$ outside of $J_x$, it must be that $x \in \underset{i \in J_x}{\cup} V_i \subset \underset{i \in J}{\cup} V_i$, and hence $x$ is in $\underset{i \in I}{\cup} W_i$. This shows that $(K,\mathcal{W})$ is indeed an element of $S$. It is clear by construction that it is an upper bound for $(T ,\leq )$. Hence we have shown that every [[chain]] in $(S,\leq)$ has an upper bound, and so Zorn's lemma implies the claim. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} The above account follows \begin{itemize}% \item [[Matt Rosenzweig]], \emph{\href{https://matthewhr.wordpress.com/2014/06/11/general-shrinking-lemma-for-normal-spaces/}{General shrinking lemma for normal spaces}} \end{itemize} The example (a [[Dowker space]]) of a normal space with a (not locally-finite) countable cover to which the shrinking lemma does not apply is given in \begin{itemize}% \item Amer Beslagic, \emph{A Dowker product}, Transactions of the AMS, vol 292, number 2 (1985) (\href{http://www.ams.org/journals/tran/1985-292-02/S0002-9947-1985-0808735-X/S0002-9947-1985-0808735-X.pdf}{pdf}) \end{itemize} \end{document}