\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{shuffle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{combinatorics}{}\paragraph*{{Combinatorics}}\label{combinatorics} [[!include combinatorics - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{shuffles}{Shuffles}\dotfill \pageref*{shuffles} \linebreak \noindent\hyperlink{equivalent_characterizations}{Equivalent characterizations}\dotfill \pageref*{equivalent_characterizations} \linebreak \noindent\hyperlink{unshuffles}{Unshuffles}\dotfill \pageref*{unshuffles} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{products_of_simplices}{Products of simplices}\dotfill \pageref*{products_of_simplices} \linebreak \noindent\hyperlink{eilenbergzilber_map}{Eilenberg-Zilber map}\dotfill \pageref*{eilenbergzilber_map} \linebreak \noindent\hyperlink{differential_graded_coalgebras}{Differential graded coalgebras}\dotfill \pageref*{differential_graded_coalgebras} \linebreak \noindent\hyperlink{differential_graded_hopf_algebras}{Differential graded Hopf algebras}\dotfill \pageref*{differential_graded_hopf_algebras} \linebreak \noindent\hyperlink{in_algebras}{In $L_\infty$-algebras}\dotfill \pageref*{in_algebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term `shuffle' conjures up the idea of shuffling a pack of cards. In fact the mathematical idea is nearer to shuffling two packs of cards one through the other. Suppose we have a pack of $p$ cards and a pack of $q$ cards and we build a pack of $p+q$ cards, whilst retaining the order on the two `sub-packs'. The result is a $(p,q)$-shuffle. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{shuffles}{}\subsubsection*{{Shuffles}}\label{shuffles} \begin{udefn} For $p,q \in \mathbb{N}$ two [[natural number]]s, a \textbf{$(p,q)$-shuffle} is a [[permutation]] \begin{displaymath} (\mu_1, \cdots, \mu_p, \nu_1, \cdots, \nu_q) \end{displaymath} of $(1,2, \cdots, p+q)$ subject to the condition that \begin{displaymath} \mu_1 \lt \mu_2 \lt \cdots \lt \mu_p \end{displaymath} and \begin{displaymath} \nu_1 \lt \nu_2 \lt \cdots \lt \nu_q \,. \end{displaymath} The \textbf{signature} of a $(p,q)$-shuffle is the [[signature of a permutation|signature]] of the corresponding permutation. \end{udefn} \hypertarget{equivalent_characterizations}{}\subsubsection*{{Equivalent characterizations}}\label{equivalent_characterizations} Two other equivalent (and dual) ways of defining the notion of $(p,q)$-shuffle are as follows (e.g. \hyperlink{HoffbeckMoerdijk17}{Hoffbeck-Moerdijk 17, section 1.1}): \begin{itemize}% \item Consider $p$ and $q$ as the [[linear orders]] $(p) = \{ 1 \lt \dots \lt p \}$ and $(q) = \{ 1 \lt \dots \lt q \}$. Then a $(p,q)$-shuffle is a way of extending the [[partial order]] on the [[coproduct]] $(p) + (q)$ to a linear order, or equivalently, a [[surjective]] [[monotone function]]\begin{displaymath} (p) + (q) \to (p+q). \end{displaymath} \item Consider $p$ and $q$ as [[non-empty]] [[linear orders]] $[p] = \{ 0 \lt \dots \lt p \}$ and $[q] = \{ 0 \lt \dots \lt q \}$. Then a $(p,q)$-shuffle is a [[maximal chain]] within the [[product]] [[partial order]] $[p] \times [q]$, or equivalently, an [[injective]] [[monotone function]]\begin{displaymath} [p+q] \to [p] \times [q]. \end{displaymath} \end{itemize} \hypertarget{unshuffles}{}\subsubsection*{{Unshuffles}}\label{unshuffles} The same concept viewed from the other end leads to \emph{unshuffles} . These are just shuffles but are used in dual situations in the applications. The definition that follows is `from the literature'. It is equivalent to that of shuffle that we gave above. (Although not needed, it is important to note the different terminology used in certain applications of the idea for when original source material is consulted.) \begin{udefn} We say that a permutation $\sigma\in S_n$ is a $(j,n-j)$-unshuffle, $o\leq j\leq n$ if $\sigma(1)\lt \ldots \sigma(j)$ and $\sigma(j+1)\lt \ldots \lt \sigma(n)$. \end{udefn} You can also say that $\sigma$ is a $(j,n-j)$-unshuffle if $\sigma(i) \lt \sigma(i+1)$ when $i\neq j$. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{products_of_simplices}{}\subsubsection*{{Products of simplices}}\label{products_of_simplices} Shuffles control the combinatorics of [[product]]s of [[simplices]]. See [[products of simplices]] for details. \hypertarget{eilenbergzilber_map}{}\subsubsection*{{Eilenberg-Zilber map}}\label{eilenbergzilber_map} Related to the product of simplices: shuffles control the [[Eilenberg-Zilber map]]. See there for details. \hypertarget{differential_graded_coalgebras}{}\subsubsection*{{Differential graded coalgebras}}\label{differential_graded_coalgebras} Shuffles are used in defining the pre-cgc structure on $\bigwedge V$ in the theory of [[differential graded coalgebras]] \hypertarget{differential_graded_hopf_algebras}{}\subsubsection*{{Differential graded Hopf algebras}}\label{differential_graded_hopf_algebras} Shuffles are also used for defining the shuffle product on $T(V)$, see [[differential graded Hopf algebra]]. \hypertarget{in_algebras}{}\subsubsection*{{In $L_\infty$-algebras}}\label{in_algebras} In the definition of [[L-∞ algebras]] the \emph{unshuffle} side of shuffles is used. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[shuffles of trees]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} $(p,q)$-shuffles are discussed in: \begin{itemize}% \item [[Samuel Eilenberg]], [[Saunders MacLane]], On the groups $H(\Pi,n)$, I, Ann. of Math. (2) 58, (1953), 55--106. (\href{https://www.jstor.org/stable/1969820}{jstor}) \item [[Marcelo Aguiar]], [[Swapneel Mahajan]], \emph{[[Monoidal Functors, Species and Hopf Algebras]]}, With forewords by [[Kenneth Brown]], [[Stephen Chase]], [[André Joyal]]. CRM Monograph Series \textbf{29} Amer. Math. Soc. 2010. lii+784 pp. (\href{http://www.math.cornell.edu/~maguiar/a.pdf}{author pdf}) (See section 2.2.3.) \end{itemize} The two dual equivalent characterizations of $(p,q)$-shuffles (called \emph{shuffles of linear trees} or \emph{shuffles of linear orders}) are discussed in section 1.1 of \begin{itemize}% \item [[Eric Hoffbeck]], [[Ieke Moerdijk]], \emph{Shuffles of trees}, (\href{https://arxiv.org/abs/1705.03638}{arXiv:1705.03638}). \end{itemize} [[!redirects shuffles]] [[!redirects unshuffle]] [[!redirects unshuffles]] \end{document}