\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{sigma-model -- exposition of a general abstract formulation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{phyiscs}{}\paragraph*{{Phyiscs}}\label{phyiscs} [[!include physicscontents]] \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \begin{quote}% This is a sub-entry of [[sigma-model]]. See there for further background and context. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{exposition_of_a_general_abstract_formulation}{Exposition of a general abstract formulation}\dotfill \pageref*{exposition_of_a_general_abstract_formulation} \linebreak \noindent\hyperlink{ExpositionQuantumFieldTheory}{Quantum field theory}\dotfill \pageref*{ExpositionQuantumFieldTheory} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ExpositionQFTExamples}{Examples}\dotfill \pageref*{ExpositionQFTExamples} \linebreak \noindent\hyperlink{ExpositionClassicalFieldTheory}{Classical field theory}\dotfill \pageref*{ExpositionClassicalFieldTheory} \linebreak \noindent\hyperlink{ExpositionQuantization}{Quantization}\dotfill \pageref*{ExpositionQuantization} \linebreak \noindent\hyperlink{ExpositionClassicalSigmaModels}{Classical $\sigma$-models}\dotfill \pageref*{ExpositionClassicalSigmaModels} \linebreak \noindent\hyperlink{ExpositionQuantumSigmaModels}{Quantum $\sigma$-models}\dotfill \pageref*{ExpositionQuantumSigmaModels} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{exposition_of_a_general_abstract_formulation}{}\subsection*{{Exposition of a general abstract formulation}}\label{exposition_of_a_general_abstract_formulation} We give a leisurely exposition of a general abstract formulation $\sigma$-models, aimed at readers with a background in [[category theory]] but trying to assume no other prerequisites. What is called an \emph{$n$-dimensional $\sigma$-model} is first of all an instance of an $n$-dimensional [[quantum field theory]] (to be explained). The distinctive feature of those quantum field theories that are $\sigma$-models is that \begin{enumerate}% \item these arise from a simpler kind of field theory -- called a [[classical field theory]] -- by a process called [[quantization]] \item moreover, this simpler kind of field theory encoded by[[geometry|geometric data]] in a nice way: it describes physical [[configuration space]]s that are [[mapping space]]s into a [[geometry|geometric]] [[space]] equipped with some [[synthetic differential geometry|differential geometric]] [[structure]]. \end{enumerate} We give expositions of these items step-by-step: \begin{enumerate}% \item \hyperlink{ExpositionQuantumFieldTheory}{Quantum field theory} \item \hyperlink{ExpositionClassicalFieldTheory}{Classical field theory} \item \hyperlink{ExpositionQuantization}{Quantization} \item \hyperlink{ExpositionClassicalSigmaModels}{Classical sigma-models} \item \hyperlink{ExpositionQuantumSigmaModels}{Quantum sigma-models} \end{enumerate} We draw from (\hyperlink{FHLT}{FHLT, section 3}). \hypertarget{ExpositionQuantumFieldTheory}{}\subsubsection*{{Quantum field theory}}\label{ExpositionQuantumFieldTheory} \hypertarget{definition}{}\paragraph*{{Definition}}\label{definition} For our purposes here, a [[quantum field theory]] of [[dimension]] $n$ is a [[symmetric monoidal functor]] \begin{displaymath} Z : Bord_n^S \to \mathcal{C} \,, \end{displaymath} where \begin{itemize}% \item $Bord_n^S$ is a [[cobordism category|category of n-dimensional cobordisms]] that are equipped with some [[structure]] $S$; \begin{itemize}% \item its [[object]]s are $(n-1)$-[[dimension]]al [[topological manifold]]s; \item its [[morphism]]s are [[isomorphism class]]es of $n$-[[dimension]]al [[cobordism]]s between such manifolds \item and all manifolds are equipped with \emph{$S$-[[structure]]} . For instance $S$ could be \emph{[[Riemannian structure]]} . Then we would call $Z$ a [[Euclidean quantum field theory]] (confusingly). If $S$ is ``no structure'' then we call $Z$ a [[topological quantum field theory]]. \item the [[monoidal category]]-structure is given by [[disjoint union]] of manifolds \begin{displaymath} \Sigma_1 \otimes \Sigma_2 := \Sigma_1 \coprod \Sigma_2 \,; \end{displaymath} \end{itemize} \item $\mathcal{C}$ is some [[symmetric monoidal category]]. \end{itemize} We think of data as follows: \begin{itemize}% \item $Bord_n^S$ is a model for \emph{being} and \emph{becoming} in [[physics]] (following [[Bill Lawvere]]`s terminology): the objects of $Bord_n^S$ are archetypes of \emph{physical spaces that are} and the morphisms are \emph{physical spaces that evolve} ; \item the [[object]] $Z(\Sigma)$ that $Z$ assigns to any $(n-1)$-manifold $\Sigma$ is to be thought of as the \emph{[[space]] of all possible [[state]]s} over the space $\Sigma$ of a the physical system to be modeled; \item so $\mathcal{C}$ is the category of [[n-vector space]]s among which the \emph{spaces of [[state]]s} of the quantum theory can be picked; \item the [[morphism]] $Z(\hat \Sigma) : Z(\Sigma_{in}) \to Z(\Sigma_{out})$ that $\Sigma$ assigns to any [[cobordism]] $\hat \Sigma$ with incoming [[boundary]] $\Sigma_{in}$ and outgoing boundary $\Sigma_{out}$ is the [[propagator]] along $\hat \Sigma$: it maps every state $\psi \in Z(\Sigma_{in})$ of the system over $\Sigma_{in}$ to the state $Z(\Psi) \in \Sigma_{out}$ that is the result of the evolution of $\psi$ along $\hat \Sigma$ by the \emph{dynamics} of the system. Or conversely: the action of $Z$ encodes what this dynamics is supposed to be. \end{itemize} Notice that since $Z$ is required to be a symmetric monoidal functor it sends disjoint unions of manifolds to [[tensor product]]s \begin{displaymath} F(\Sigma_1 \coprod \Sigma_2) \simeq Z(\Sigma_1) \otimes Z(\Sigma_2) \,. \end{displaymath} Moreover, for $\hat \Sigma$ a closed [[cobordism]], hence a morphism $\emptyset \stackrel{\hat \Sigma}{\to} \emptyset$ from the [[empty set|empty]] manifold to itself, we have that \begin{itemize}% \item $Z(\emptyset) = \mathbf{1}$ is the tensor unit of $\mathcal{C}$; \item $Z(\hat \Sigma) \in End(\mathbb{1})$ is an [[endomorphism]] of this tensor unit, a \emph{number} as seen internal to $\mathcal{C}$ -- this is the \emph{invariant} associated to $\hat \Sigma$ by $Z$, called the [[partition function]] of $Z$ over $\hat \Sigma$. We can think of $Z$ as being a rule for computing such invariants by building them up from smaller pieces. This is the \emph{locaity} of quantum field theory. \end{itemize} \hypertarget{ExpositionQFTExamples}{}\paragraph*{{Examples}}\label{ExpositionQFTExamples} \begin{itemize}% \item A simple but archetypical example is this: let $S := Riem$ be [[Riemannian manifold|Riemannian structure]]. Then the category $Bord_1^{Riem}$ of 1-dimensional cobordisms equipped with Riemannian structure is generated (as a [[symmetric monoidal category]]) from [[interval]]s \begin{displaymath} \bullet \stackrel{t}{\to} \bullet \end{displaymath} equipped with a [[length]] $t \in \mathbb{R}_+$. Composition is given by addition of lengths \begin{displaymath} (\bullet \stackrel{t_1}{\to} \bullet \stackrel{t_2}{\to}) = (\bullet \stackrel{t_1 + t_2}{\to} \bullet) \,. \end{displaymath} Therefore a 1-dimensional [[Euclidean quantum field theory]] \begin{displaymath} Z : Bord_1^{Riem} \to Vect \end{displaymath} is specified by \begin{itemize}% \item a [[vector space]] $\mathcal{H}$ (``of [[state]]s'') assigned to the point; \item for each $t \in \mathbb{R}_+$ a linear endomorphism \begin{displaymath} U(t) : \mathcal{H} \to \mathcal{H} \end{displaymath} such that \begin{displaymath} U(t_1 + t_2) = U(t_2) \circ U(t_1) \,. \end{displaymath} \end{itemize} This is just a system of [[quantum mechanics]]. If we demand that $Z$ respects the [[smooth structure]] on the space of morphisms in $Bord_1^{Riem}$ then there will be a linear map $i H : \mathcal{H} \to \mathcal{H}$ such that \begin{displaymath} U(t) = \exp(i H t) \,. \end{displaymath} This $H$ is called the [[Hamilton operator]] of the system. (We are glossing here over some technical fine print in the definition of $Bord_1^{Riem}$. Done right we have that $\mathcal{H}$ may indeed be an infinite-dimensional vector space. See [[(1,1)-dimensional Euclidean field theories and K-theory]]) \end{itemize} \hypertarget{ExpositionClassicalFieldTheory}{}\subsubsection*{{Classical field theory}}\label{ExpositionClassicalFieldTheory} A special class of examples of $n$-dimensional quantum field theories, as discussed \hyperlink{ExpositionQuantumFieldTheory}{above}, arise as [[deformation quantization|deformations]] or \emph{[[path integral|averages]]} of similar, but simpler structure: \emph{[[classical field theories]]} . The process that constructs a quantum field theory out of a classical field theory is called \emph{[[quantization]]} . This is discussed \hyperlink{ExpositionQuantization}{below}. Here we describe what a classical field theory is. We shall inevitably oversimplify the situation such as to still count as a leisurely exposition. The kind of examples that the following discussion applies to strictly are field theories . But despite its simplicity, this case accurately reflects most of the general abstract properties of the general theory. For our purposes here, a [[classical field theory]] of dimension $n$ is \begin{itemize}% \item a [[symmetric monoidal functor]] \begin{displaymath} \exp(i S(-)) : Bord_n^S \to Span(Grpd, \mathcal{C}) \,, \end{displaymath} where \begin{itemize}% \item $Bord_n^S$ is the same [[category of cobordisms]] as before; \item $Span(Grpd, \mathcal{C})$ is the [[category of spans]] of [[groupoid]]s over $\mathcal{C}$: \begin{itemize}% \item [[object]]s are [[groupoid]]s $K$ equipped with [[functor]]s $\phi : K \to \mathcal{C}$; \item [[morphism]]s $(K_1, \phi_1) \to (K_2, \phi_2)$ are [[diagram]]s \begin{displaymath} \itexarray{ && \hat K \\ & \swarrow && \searrow \\ K_1 &&\swArrow&& K_2 \\ & \searrow && \swarrow \\ && \mathcal{C} } \,, \end{displaymath} where in the middle we have a [[natural transformation]]; \item [[composition]] of morphism is by forming [[2-pullback]]s: \begin{displaymath} (\hat K_2 \circ \hat K_1) = \hat K_1 \prod_{K_2} \hat K_2 \,. \end{displaymath} \end{itemize} \end{itemize} \end{itemize} Let $\hat \Sigma : \Sigma_1 \to \Sigma_2$ be a [[cobordism]] and \begin{displaymath} \exp(i S(-))_{\Sigma} = \left( \itexarray{ && Conf_{\hat \Sigma} \\ & {}^{\mathllap{(-)|_{in}}}\swarrow && \searrow^{\mathrlap{(-)|_{out}}} \\ Conf_{\Sigma_1} &&\swArrow_{\exp(i S(-)_{\hat \Sigma})}&& Conf_{\Sigma_2} \\ & {}_{V_{\Sigma_1}}\searrow && \swarrow_{\mathrlap{V_{\Sigma_2}}} \\ && \mathcal{C} } \right) \end{displaymath} the value of a classical field theory on $\hat \Sigma$. We interpret this data as follows: \begin{itemize}% \item $Conf_{\Sigma_1}$ is the [[configuration space]] of a [[classical field theory]] over $\Sigma_1$: [[object]]s are ``field configurations'' on $\Sigma_1$ and [[morphism]]s are [[gauge transformation]]s between these. Similarly for $Conf_{\Sigma_2}$. Here a ``physical field'' can be something like the [[electromagnetic field]]. But it can also be something very different. For the special case of $\sigma$-models that we are eventually getting at, a ``field configuration'' here will instead be a way of an particle of shape $\Sigma_1$ sitting in some [[target space]]. \item $Conf_{\hat \Sigma}$ is similarly the groupoid of field configurations on the whole cobordism, $\hat \Sigma$. If we think of an object in $Conf_{\hat \Sigma}$ of a way of a [[brane]] of shape $\Sigma_1$ sitting in some [[target space]], then an object in $Conf_{\hat Sigma}$ is a \emph{trajectory} of that brane in that target space, along which it evolves from shape $\Sigma_1$ to shape $\Sigma_2$. \item $V_{\Sigma_i} : Conf_{\Sigma_i} \to \mathcal{C}$ is the [[classifying space|classifying map]] of a kind of [[vector bundle]] over configuration space: a [[state]] $\psi \in Z(\Sigma_1)$ of the [[quantum field theory]] that will be associated to this [[classical field theory]] by [[quantization]] will be a [[section]] of this vector bundle. Such a section is to be thought of as a generalization of a [[probability distribution]] on the space of classical field configurations. The [[generalized element]]s of a [[fiber]] $V_{c}$ of $V_{\Sigma_1}$ over a configuration $c \in Conf_{\Sigma_1}$ may be thought of as an \emph{internal state} of the brane of shape $\Sigma_1$ sitting in target space. \item $\exp(i S(-))_{\hat \Sigma}$ is the [[action functional]] that defines the classical field theory: the component \begin{displaymath} \exp(i S(\gamma))_{\hat \Sigma} : V_{\gamma|_{in}} \to V_{\gamma|_{out}} \end{displaymath} \end{itemize} of this [[natural transformation]] on a trajectory $\gamma \in Conf_{\hat \Sigma}$ going from a configuration $\gamma|_{in}$ to a configuration $\gamma|_{out}$ is a morphism in $\mathcal{C}$ that maps the internal states of the ingoing configuration $\gamma|_{\Sigma_1}$ to the internal states of the outgoing configuration $\gamma|_{\Sigma_2}$. This evolution of internal states encodes the \emph{classical dynamics} of the system. Notice that this way a classical field theory is taken to be a special case of a \hyperlink{ExpositionQuantumFieldTheory}{quantum field theory}, where the codomain of the symmetric monoidal functor is of the special form $Span(Grpd, \mathcal{C})$. For more on this see [[classical field theory as quantum field theory]]. \hypertarget{ExpositionQuantization}{}\subsubsection*{{Quantization}}\label{ExpositionQuantization} We assume now that $\mathcal{C}$ has [[colimit]]s and in fact [[biproduct]]s. Then for every [[functor]] $\phi : K \to \mathcal{C}$ the [[colimit]] \begin{displaymath} \int^{K} \phi \in \mathcal{C} \end{displaymath} exists, and (using the existence of [[biproduct]]s) this construction extends to a [[functor]] \begin{displaymath} \int : Span(Grpd, \mathcal{C}) \to \mathcal{C} \,. \end{displaymath} We call this the \emph{[[path integral]]} functor. For \begin{displaymath} \exp(i S(-)) : Bord_n^S \to Span(Grpd, \mathcal{C}) \end{displaymath} a \hyperlink{ExpositionClassicalFieldTheory}{classical field theory}, we get this way a \hyperlink{ExpositionQuantumFieldTheory}{quantum field theory} by forming the composite functor \begin{displaymath} Z := \int \circ \exp(i S(-)) : Bord_n^S \stackrel{\exp(i S(-))}{\to} Span(Grpd, \mathcal{C}) \stackrel{\int}{\to} \mathcal{C} \,. \end{displaymath} This $Z$ we call the \emph{[[quantization]]} of $\exp(i S(-))$. It acts \begin{itemize}% \item on [[object]]s by sending \begin{displaymath} \begin{aligned} \Sigma_{in} & \mapsto (V_{\Sigma_{in}} : Conf_{\Sigma_{in}} \to \mathcal{C}) \\ & \mapsto \mathcal{H}_{\Sigma_{in}} := \int^K V_{\Sigma_{in}} \end{aligned} \end{displaymath} the vector bundle on the [[configuration space]] over some boundary $\Sigma_{in}$ of [[worldvolume]] to its space $\mathcal{H}_{\Sigma_{in}}$ of [[gauge transformation|gauge invariant]] [[section]]s. In typical situations this $\mathcal{H}_{\Sigma_{in}}$ is the famous [[Hilbert space]] of [[state]]s in [[quantum mechanics]], only that here it is allowed to be any object in $\mathcal{C}$; \item on [[morphism]]s by sending a [[natural transformation]] \begin{displaymath} \begin{aligned} \hat \Sigma & \mapsto (\exp(i S(-))_{\hat \Sigma} : \gamma \mapsto V_{\gamma|_{in}} \to V_{\gamma|_{out}}) \\ & \mapsto (\int^K \exp(i S(-))_{\hat \Sigma} : \mathcal{H}_{\Sigma_1} \to \mathcal{H}_{\Sigma_2} ) \end{aligned} \end{displaymath} to the [[integral transform]] that it defines, weighted by the [[groupoid cardinality]] of $Conf_{\hat \Sigma}$ : the \emph{[[path integral]]} . \end{itemize} \hypertarget{ExpositionClassicalSigmaModels}{}\subsubsection*{{Classical $\sigma$-models}}\label{ExpositionClassicalSigmaModels} A \emph{classical $\sigma$-model} is a \hyperlink{ExpositionClassicalFieldTheory}{classical field theory} such that \begin{itemize}% \item the [[configuration space]]s $Conf_{\Sigma}$ are [[mapping spaces]] $\mathbf{H}(\Sigma,X)$ in some suitable category -- some [[cohesive (infinity,1)-topos|higher topos]] in fact -- , for $X$ some fixed [[object]] of that category called \emph{[[target space]]} ; \item the bundles $V_{\Sigma} : Conf_{\Sigma} \to \mathcal{C}$ ``of internal states'' over these mapping spaces are \begin{itemize}% \item the [[transgression]] to these [[mapping space]]s\ldots{} \item \ldots{}of an [[associated infinity-bundle|associated higher bundle]]\ldots{} \item \ldots{}asscociated to a [[circle n-bundle with connection]] on [[target space]]\ldots{} \item \ldots{}encoded by a classifying morphism \begin{displaymath} \alpha : X \to \mathbf{B}^{n} U(1) \end{displaymath} into the [[circle n-group]] in $\mathbf{H}$; equipped with an [[connection on an infinity-bundle|n-connection]] $\nabla$\ldots{} \item \ldots{}where the [[associated bundle|association]] is via a [[representation]] \begin{displaymath} \rho : \mathbf{B}^{n+1} U(1) \to (n+1) Vect \end{displaymath} on [[n-vector spaces]], which is usually taken to be the canonical 1-dimensional one. \end{itemize} One calls $(\alpha,\nabla)$ the [[background gauge field]] of the $\sigma$-model. \item The [[action functional]]s $\exp(i S(-))_{\hat \Sigma}$ are given by the [[higher parallel transport]] of $\nabla$ over $\hat \Sigma$. \end{itemize} So an $n$-dimensional $\sigma$-model is a classical field theory that is [[representable functor|represented]], in a sense, by a [[circle n-bundle with connection]] on some [[target space]]. More specifically and more simply, in cases where $X$ is just a [[discrete ∞-groupoid]] -- the case of , every [[principal ∞-bundle]] on $X$ is necessarily , hence the [[background gauge field]] is given just by the morphism \begin{displaymath} \alpha : X \to \mathbf{B}^{n} U(1) \,. \end{displaymath} Then for $\hat \Sigma$ a closed $n$-dimensional manifold, the [[action functional]] of the sigma-model on $\Sigma$ on a field configuration $\gamma : \hat \Sigma \to X$ has the value \begin{displaymath} \exp(i S(\gamma))_{\hat \Sigma} = \int_{\hat \Sigma} [\alpha] \end{displaymath} being the evaluation of $[\alpha]$ regarded as a class in [[ordinary cohomology]] $H^n(\hat \Sigma, U(1))$ evaluated on the [[fundamental class]] of $X$. One says that $[\alpha]$ is the [[Lagrangian]] of the theory. \hypertarget{ExpositionQuantumSigmaModels}{}\subsubsection*{{Quantum $\sigma$-models}}\label{ExpositionQuantumSigmaModels} (\ldots{}) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} (\href{http://arxiv.org/abs/0905.0731}{arXiv}) \end{itemize} \end{document}