\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simple function} \hypertarget{simple_functions}{}\section*{{Simple functions}}\label{simple_functions} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{integration}{Integration}\dotfill \pageref*{integration} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Simple functions are (almost) the most basic notion of [[measurable function]] in [[measure theory]]. Given a [[measure]], it's easy to define the [[integral]] of a simple function, and we extend this to more general functions by continuity. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $X$ be a [[measurable space]]. We may want $X$ to be equipped with some more data; if $X$ is a [[measure space]], then this is plenty of data. However, for the most basic definitions, it's enough if $X$ is simply a measurable space. This is the [[domain]] of our simple functions. Another necessary datum is the simple functions' [[codomain]] $K$, which we will eventually want to be at least a [[Banach space]] over the [[real numbers]]. (In the simplest example, $K$ is $\mathbb{R}$ itself, or perhaps the space $\mathbb{C}$ of [[complex numbers]].) We take $K$ to be a measurable space using its [[Borel sets]]. \begin{defn} \label{trad}\hypertarget{trad}{} A [[measurable function]] from $X$ to $K$ is \textbf{simple} if its [[range]] is [[finite set|finite]]. \end{defn} Since a simple function $f$ is measurable and a [[singleton subset|singleton]] is Borel, each [[fibre]] of $f$ is a [[measurable set]] in $X$; the function $f$ is given by the (finitely many) nonempty fibres and their (singleton) images. This suggests another way to look at simple functions: \begin{defn} \label{lincomb}\hypertarget{lincomb}{} A \textbf{simple function} from $X$ to $K$ is a formal $K$-[[linear combination]] of [[measurable subsets]] of $X$. \end{defn} Here we identify a measurable set $A$ with its [[characteristic function]] $\chi_A$, so the formal linear combination $\sum_i c_i A_i$ is identified with the function $\sum_i c_i \chi_{A_i}$, which is measurable and whose range is contained in the finite set of sums of the $c_i$. (If there are $n$ terms in the linear combination, then there are at most $2^n$ such sums.) However, the na\"i{}ve notion of equality of linear combinations is finer than equality of the corresponding functions, so we must combine Definition \ref{lincomb} with a definition of equality: \begin{defn} \label{equal}\hypertarget{equal}{} Two simple functions from $X$ to $K$, in the sense of Definition \ref{lincomb}, are \textbf{equal} if their corresponding [[functions]] from $X$ to $K$ are equal as functions. \end{defn} Then we have a [[canonical transformation|canonical]] [[bijection]] between the set of simple functions as in Definition \ref{trad} and the set of [[equivalence classes]] of simple functions as in Definition \ref{lincomb}. Arguably, even this is not really the correct notion of equality, since functions may be equal for the purpose of integration without being literally equal. If $X$ is equipped with a $\sigma$-[[sigma-ideal|ideal]] of [[null sets]] (or a $\delta$-[[delta-filter|filter]] of [[full sets]]), then we may consider a yet coarser notion of equality: \begin{defn} \label{almostequal}\hypertarget{almostequal}{} Two simple functions, in the sense of either Definition \ref{trad} or Definition \ref{lincomb}, are \textbf{almost equal} if they (or their corresponding functions) are [[almost equality|equal almost everywhere]]. \end{defn} Sometimes, we wish to restrict attention to those simple functions which we expect to have a finite integral. If $X$ is equipped with an [[ideal]] of [[bounded sets]] (which in a measure space are sets with finite measure), then we may do this: \begin{defn} \label{bounded}\hypertarget{bounded}{} A \textbf{simple function of bounded support} is a simple function in the sense of Definition \ref{trad} such that the fibre over every non-zero number is bounded, or equivalently (in the sense of Definition \ref{lincomb}) a formal linear combination of bounded measurable sets. \end{defn} In some approaches to [[measure theory]], one \emph{starts} with a $\delta$-[[delta-ring|ring]] of measurable sets, which may be reinterpreted as the bounded sets in the generated $\sigma$-[[sigma-algebra|algebra]] of [[relatively measurable sets]], and then the simple functions will automatically have bounded support. Finally, there is one more useful restriction (and slight generalisation) of simple functions, applicable when $K$ is ordered: \begin{defn} \label{positive}\hypertarget{positive}{} A \textbf{positive simple function} is a simple function in the sense of Definition \ref{trad} whose range is contained in the [[positive cone]] $K^+$ of $K$, or equivalently (in the sense of Definition \ref{lincomb}) a formal $K^+$-linear combination of measurable sets. An \textbf{extended positive simple function} (note the [[red herring]]) takes values in the [[extended positive cone]] $\bar{K}^+$, or equivalently is a $\bar{K}^+$-linear combination. \end{defn} \hypertarget{integration}{}\subsection*{{Integration}}\label{integration} Let $X$ be equipped with a [[measure]] $\mu$, so $(X,\mu)$ is a [[measure space]]. (In particular, $X$ has the structure necessary for all of the definitions above, including both Definitions \ref{almostequal} and \ref{bounded}.) If $f$ is a simple function from $X$ to $K$, then we wish to define the [[integral]] of $f$. In general, this is a little tricky, but it's easy if $f$ either is \hyperlink{positive}{positive} or has \hyperlink{bounded}{bounded support}. It is easiest to write down the definition if we think of simple functions using Definition \ref{lincomb}. Then we have: \begin{defn} \label{integral}\hypertarget{integral}{} The \textbf{integral} of the simple function $f$, represented by the linear combination $\sum_i c_i A_i$, is $\sum_i c_i \mu(A_i)$. \end{defn} \begin{prop} \label{intpositive}\hypertarget{intpositive}{} The integral of a positive simple function always exists (but may be infinite). It is finite if $\mu$ is a [[finite measure]], and it is positive (possibly $0$ or $\infty$) if $\mu$ is a [[positive measure]]. Also, if $\mu$ is positive, then the integral of an extended positive simple function always exists. \end{prop} (However, the integral of an extended positive simple function with respect to a finite positive measure need not be finite.) \begin{prop} \label{intbounded}\hypertarget{intbounded}{} The integral of a simple function with bounded support always exists and is finite (being a finite linear combination of finite numbers). \end{prop} \begin{prop} \label{intequal}\hypertarget{intequal}{} Two (positive or with bounded support) simple functions $f$ and $g$ are almost equal (with respect to $\mu$) if and only if the integral of $f - g$ is zero. \end{prop} \begin{defn} \label{norm}\hypertarget{norm}{} The \textbf{$L^1$-norm} of a simple function is the integral of its pointwise norm (which is a positive simple function to $\mathbb{R}$) with respect to the [[absolute value]] of the measure $\mu$ (which is a positive measure): \begin{displaymath} {\|f\|}_1 \coloneqq \int {\|f(x)\|} {|\mu(\mathrm{d}x)|} . \end{displaymath} \end{defn} In this context, we usually start with a positive measure $\mu$; in that case, of course, there is no need to bother taking the absolute value of $\mu$. \begin{prop} \label{NVS}\hypertarget{NVS}{} The simple functions of bounded support form a [[normed vector space]] $Simp_c$ under the $L^1$-norm, if we consider them up to \hyperlink{almostequal}{almost equality}. \end{prop} If we don't use almost equality, then we get in general only a [[seminorm]], but if we pass to a [[quotient space]] with a norm, then Proposition \ref{intequal} tells us that we are now using almost equality (and shows that Definition \ref{integral} is well defined when applied to Definition \ref{trad}). \begin{defn} \label{L1}\hypertarget{L1}{} The [[complete space|completion]] of the normed vector space $Simp_c$ (under the $L^1$-norm) is the [[Banach space]] $L^1$ of \textbf{[[absolutely integrable functions]]} (an example of a [[Lebesgue space]]). \end{defn} \begin{prop} \label{integration}\hypertarget{integration}{} Taking the integral of a simple function of bounded support is a [[continuous linear functional]] on $Simp_c$, so it extends to all of $L^1$. \end{prop} In this way, we may define the integral of any absolutely integrable function. There might be some technical requirements for this to be true. I'll try to check on that. [[!redirects simple function]] [[!redirects simple functions]] \end{document}