\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definitions}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{SimplicialSimplex}{Simplicial simplices}\dotfill \pageref*{SimplicialSimplex} \linebreak \noindent\hyperlink{CellularSimplex}{Cellular (simplicial) simplex}\dotfill \pageref*{CellularSimplex} \linebreak \noindent\hyperlink{TopologicalSimplex}{Topological simplex}\dotfill \pageref*{TopologicalSimplex} \linebreak \noindent\hyperlink{BarycentricCoordinates}{Barycentric coordinates}\dotfill \pageref*{BarycentricCoordinates} \linebreak \noindent\hyperlink{CartesianCoordinates}{Cartesian coordinates}\dotfill \pageref*{CartesianCoordinates} \linebreak \noindent\hyperlink{CoordinateTransformation}{Transformation between Barycentric and Cartesian coordinates}\dotfill \pageref*{CoordinateTransformation} \linebreak \noindent\hyperlink{SingularSimplex}{Singular simplex}\dotfill \pageref*{SingularSimplex} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_globes}{Relation to globes}\dotfill \pageref*{relation_to_globes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{cellular simplex} is one of the basic [[geometric shapes for higher structures]]. Variants of the same ``shape archetype'' exist in several settings, e.g., that of a [[simplicial set]], the topological /cellular one, and categorical contexts, plus others. \hypertarget{Definition}{}\subsection*{{Definitions}}\label{Definition} \hypertarget{SimplicialSimplex}{}\subsubsection*{{Simplicial simplices}}\label{SimplicialSimplex} For $n \in \mathbb{N}$, the standard \emph{simplicial $n$-simplex} $\Delta[n]$ is the [[simplicial set]] which is represented (as a [[presheaf]]) by the object $[n]$ in the [[simplex category]], so $\Delta[n]= \Delta(-,[n])$. \hypertarget{CellularSimplex}{}\subsubsection*{{Cellular (simplicial) simplex}}\label{CellularSimplex} Likewise, there is a standard topological $n$-simplex, which is (more or less by definition) the [[geometric realization]] of the standard simplicial $n$-simplex. \hypertarget{TopologicalSimplex}{}\subsubsection*{{Topological simplex}}\label{TopologicalSimplex} The \emph{topological $n$-simplex} $\Delta^n$ is a generalization of the standard filled \emph{[[triangle]]} in the plane, from [[dimension]] 2 to arbitrary dimensions. Each $\Delta^n$ is [[homeomorphism|homeomorphic]] to the closed $n$-[[ball]] $D^n$, but its defining [[embedding]] into a [[Cartesian space]] equips its [[boundary]] with its cellular decomposition into \emph{[[faces]]}, generalizing the way that the triangle has three [[edges]] (which are 1-simplices) as [[faces]], and three points (which are [[vertices]] or 0-simplices) as corners. The topological $n$-simplex is naturally defined as a [[subspace]] of a [[Cartesian space]] given by some relation on its canonical [[coordinates]]. There are two standard choices for such coordinate presentation, which of course define [[homeomorphism|homeomorphic]] $n$-simplices: \begin{itemize}% \item \hyperlink{BarycentricCoordinates}{Barycentric coordinates} \item \hyperlink{CartesianCoordinates}{Cartesian coordinates} \end{itemize} Each of these has its advantages and disadvantages, depending on application, but of course there is a simple coordinate transformation that exhibits an explicit [[homeomorphism]] between the two: \begin{itemize}% \item \hyperlink{CoordinateTransformation}{Transformation between Barycentric and Cartesian coordinates}. \end{itemize} \hypertarget{BarycentricCoordinates}{}\paragraph*{{Barycentric coordinates}}\label{BarycentricCoordinates} In the following, for $n \in \mathbb{N}$ we regard the [[Cartesian space]] $\mathbb{R}^n$ as equipped with the canonical [[coordinates]] labeled $x_0, x_1, \cdots, x_{n-1}$. \begin{defn} \label{TopologicalInBarycentricCoords}\hypertarget{TopologicalInBarycentricCoords}{} For $n \in \mathbb{N}$, the \textbf{topological $n$-simplex} is, up to [[homeomorphism]], the [[topological space]] whose underlying set is the subset \begin{displaymath} \Delta^n \coloneqq \{ \vec x \in \mathbb{R}^{n+1} | \sum_{i = 0 }^n x_i = 1 \; and \; \forall i . x_i \geq 0 \} \subset \mathbb{R}^{n+1} \end{displaymath} of the [[Cartesian space]] $\mathbb{R}^{n+1}$, and whose topology is the [[subspace topology]] induces from the canonical topology in $\mathbb{R}^{n+1}$. \end{defn} \begin{defn} \label{FaceInclusionInBarycentricCoords}\hypertarget{FaceInclusionInBarycentricCoords}{} For $n \in \mathbb{N}$, $\n \geq 1$ and $0 \leq k \leq n$, the \textbf{$k$th $(n-1)$-face (inclusion)} of the topological $n$-simplex is the subspace inclusion \begin{displaymath} \delta_k : \Delta^{n-1} \hookrightarrow \Delta^n \end{displaymath} induced under the barycentric coordinates of def. \ref{TopologicalInBarycentricCoords}, by the inclusion \begin{displaymath} \mathbb{R}^n \hookrightarrow \mathbb{R}^{n+1} \end{displaymath} which omits the $k$th coordinate \begin{displaymath} (x_0, \cdots , x_{n-1}) \mapsto (x_0, \cdots, x_{k-1} , 0 , x_{k}, \cdots, x_{n-1}) \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} The inclusion \begin{displaymath} \delta_0 : \Delta^0 \to \Delta^1 \end{displaymath} is the inclusion \begin{displaymath} \{1\} \hookrightarrow [0,1] \end{displaymath} of the ``right'' end of the standard interval. The other inclusion \begin{displaymath} \delta_1 : \Delta^0 \to \Delta^1 \end{displaymath} is that of the ``left'' end $\{0\} \hookrightarrow [0,1]$. \end{example} \begin{defn} \label{DegeneracyProjectionsInBarycentricCoords}\hypertarget{DegeneracyProjectionsInBarycentricCoords}{} For $n \in \mathbb{N}$ and $0 \leq k \lt n$ the \textbf{$k$th degenerate $n$-simplex (projection)} is the surjective map \begin{displaymath} \sigma_k : \Delta^{n} \to \Delta^{n-1} \end{displaymath} induced under the barycentric coordinates of def. \ref{TopologicalInBarycentricCoords} under the surjection \begin{displaymath} \mathbb{R}^{n+1} \to \mathbb{R}^n \end{displaymath} which sends \begin{displaymath} (x_0, \cdots, x_n) \mapsto (x_0, \cdots, x_{k} + x_{k+1}, \cdots, x_n) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The collection of face inclusions, def. \ref{FaceInclusionInBarycentricCoords} and degeneracy projections, def. \ref{DegeneracyProjectionsInBarycentricCoords} satisfy the (dual) [[simplicial identities]]. Equivalently, they constitute the components of a [[functor]] \begin{displaymath} \Delta^\bullet : \Delta \to Top \end{displaymath} from the [[simplex category]] $\Delta$ to the category [[Top]] of [[topological spaces]]. This is, up to [[isomorphism]], the standard [[cosimplicial object]] in $Top$. \end{prop} \hypertarget{CartesianCoordinates}{}\paragraph*{{Cartesian coordinates}}\label{CartesianCoordinates} \begin{defn} \label{TopologicalInCartesianCoordinates}\hypertarget{TopologicalInCartesianCoordinates}{} The standard \textbf{topological $n$-simplex} is, up to [[homeomorphism]], the [[subset]] \begin{displaymath} \Delta^n \coloneqq \{ \vec x \in \mathbb{R}^n | 0 \leq x_1 \leq \cdots \leq x_n \leq 1 \} \hookrightarrow \mathbb{R}^n \end{displaymath} equipped with the [[subspace topology]] of the standard topology on the [[Cartesian space]] $\mathbb{R}^n$. \end{defn} \begin{remark} \label{}\hypertarget{}{} This definition identifies the topological $n$-simplex with the space of [[interval]] maps (preserving top and bottom) $\{0 \lt 1 \lt \ldots \lt n+1\} \to I$ into the topological interval. This point of view takes advantage of the \href{http://ncatlab.org/nlab/show/simplex+category#duality_with_intervals_23}{duality} between the [[simplex category]] $\Delta$ and the category $\nabla$ of finite [[intervals]] with distinct top and bottom. Indeed, it follows from the duality that we obtain a functor \begin{displaymath} \Delta \simeq \nabla^{op} \stackrel{Int(-, I)}{\to} Top. \end{displaymath} \end{remark} \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item For $n = 0$ this is the [[point]], $\Delta^0 = *$. \item For $n = 1$ this is the standard [[interval object]] $\Delta^1 = [0,1]$. \item For $n = 2$ this is a triangle sitting in the plane like this: \begin{displaymath} \left\{ (x_0,x_1) | 0 \leq x_0 \leq x_1 \leq 1 \right\} = \left\{ \itexarray{ && && (1,1) \\ && & \nearrow & \downarrow \\ && (\tfrac{1}{2}, \tfrac{1}{2}) && (\tfrac{1}{2},1) \\ & \nearrow & && \downarrow \\ (0,0) &\stackrel{}{\to}& (0,\tfrac{1}{2}) & \to & (0,1) } \right\} \end{displaymath} \end{itemize} \end{example} \hypertarget{CoordinateTransformation}{}\paragraph*{{Transformation between Barycentric and Cartesian coordinates}}\label{CoordinateTransformation} For $n \in \mathbb{N}$, write now explicitly \begin{displaymath} \Delta^n_{bar} \hookrightarrow \mathbb{R}^{n+1} \end{displaymath} for the topological $n$-simplex in barycentric coordinate presentation, def. \ref{TopologicalInBarycentricCoords}, and \begin{displaymath} \Delta^n_{cart} \hookrightarrow \mathbb{R}^{n} \end{displaymath} for the topological $n$-simplex in Cartesian coordinate presentation, def. \ref{TopologicalInCartesianCoordinates}. Write \begin{displaymath} S_n : \mathbb{R}^{n+1} \to \mathbb{R}^n \end{displaymath} for the [[continuous function]] given in the standard coordinates by \begin{displaymath} (x_0, \cdots, x_{n}) \mapsto (x_0, x_0 + x_1, \cdots, \sum_{i = 0}^k x_i, \cdots, \sum_{i = 0}^{n-1} x_i) \,. \end{displaymath} By restriction, this induces a continuous function on the topological $n$-simplices \begin{displaymath} \itexarray{ \Delta^n_{bar} &\hookrightarrow& \mathbb{R}^{n+1} \\ \downarrow^{\mathrlap{S_n|_{\Delta^n_{bar}}}} && \downarrow^{p_n} \\ \Delta^n_{cart} &\hookrightarrow& \mathbb{R}^n } \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} For every $n \in \mathbb{N}$ the function $S_n$ is a [[homeomorphism]] and respects the face and degeneracy maps. Equivalently, $S_\bullet$ is a [[natural isomorphism]] of [[functors]] $\Delta^n \to Top$, hence an [[isomorphism]] of [[cosimplicial objects]] \begin{displaymath} S_\bullet : \Delta^\bullet_{bar} \stackrel{\simeq}{\to} \Delta^\bullet_{cart} \,. \end{displaymath} \end{prop} \hypertarget{SingularSimplex}{}\subsubsection*{{Singular simplex}}\label{SingularSimplex} \begin{defn} \label{}\hypertarget{}{} For $X \in$ [[nLab:Top]] and $n \in \mathbb{N}$, a \textbf{singular $n$-simplex} in $X$ is a [[nLab:continuous map]] \begin{displaymath} \sigma : \Delta^n \to X \,. \end{displaymath} Write \begin{displaymath} (Sing X)_n \coloneqq Hom_{Top}(\Delta^n , X) \end{displaymath} for the set of singular $n$-simplices of $X$. \end{defn} As $n$ varies, this forms the [[singular simplicial complex]] of $X$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_globes}{}\subsubsection*{{Relation to globes}}\label{relation_to_globes} The [[orientals]] relate simplices to [[globes]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[vertex]], [[edge]] \item [[triangle]], [[tetrahedron]] \item [[horn]], [[boundary of a simplex]], [[spine]] \item [[differential forms on simplices]] \item [[simplicial set]] \begin{itemize}% \item [[simplicial complex]] \item [[Kan complex]] \item [[weak Kan complex]] \end{itemize} \item [[simplicial category]] \item [[globe]], \item [[tree]], [[dendrex]] \item [[Bloch region]] \end{itemize} [[!redirects simplices]] [[!redirects simplicial simplex]] [[!redirects cellular simplex]] [[!redirects topological simplex]] [[!redirects simplicial simplices]] [[!redirects cellular simplices]] [[!redirects topological simplices]] [[!redirects singular simplex]] [[!redirects singular simplices]] [[!redirects k-simplex]] [[!redirects k-simplices]] [[!redirects 1-simplex]] [[!redirects 1-simplices]] [[!redirects 2-simplex]] [[!redirects 2-simplices]] [[!redirects 3-simplex]] [[!redirects 3-simplices]] [[!redirects n-simplex]] [[!redirects n-simplices]] \end{document}