\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplex category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ordinal}{Monoidal structure}\dotfill \pageref*{ordinal} \linebreak \noindent\hyperlink{As2Categories}{$\Delta$ and $\Delta_a$ as 2-categories}\dotfill \pageref*{As2Categories} \linebreak \noindent\hyperlink{universal_properties}{Universal properties}\dotfill \pageref*{universal_properties} \linebreak \noindent\hyperlink{DualityWithIntervals}{Duality with intervals}\dotfill \pageref*{DualityWithIntervals} \linebreak \noindent\hyperlink{combinatorics}{Combinatorics}\dotfill \pageref*{combinatorics} \linebreak \noindent\hyperlink{related_constructions}{Related constructions}\dotfill \pageref*{related_constructions} \linebreak \noindent\hyperlink{SimplicialSets}{Simplicial sets}\dotfill \pageref*{SimplicialSets} \linebreak \noindent\hyperlink{RealizationAndNerve}{Realization and nerve}\dotfill \pageref*{RealizationAndNerve} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{simplex category} $\Delta$ encodes one of the main [[geometric shapes for higher structures]]. Its objects are the standard cellular $n$-[[simplices]]. It is also called the \emph{[[simplicial category]]}, but that term is ambiguous. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{}\hypertarget{}{} The \textbf{augmented simplex category} $\Delta_a$ is the [[full subcategory]] of [[Cat]] on the [[free categories]] of [[finite set|finite]] linear [[directed graphs]] \begin{displaymath} \{c_0 \to c_1 \to \cdots \to c_n\} \,. \end{displaymath} Equivalently this is the category whose [[objects]] are finite [[total order|totally ordered sets]], or finite ordinals, and whose [[morphisms]] are order-preserving functions between them. \end{defn} \begin{defn} \label{}\hypertarget{}{} The \textbf{simplex category} $\Delta$ is the [[full subcategory]] of $\Delta_a$ (and hence of $Cat$) consisting of the free categories on finite and \textbf{[[inhabited set|inhabited]]} linear directed graphs, hence of \emph{non-empty} finite linear orders or \emph{non-zero} ordinals. \end{defn} \begin{remark} \label{}\hypertarget{}{} It is common, convenient and without risk to use a [[skeleton]] of $\Delta$ or $\Delta_a$, where we pick a fixed representative in each [[isomorphism class]] of objects. Since isomorphisms of finite linearly ordered sets are \emph{unique} this step is so trivial that it is often not even mentioned explicitly. With this the objects of $\Delta$ are in bijection with [[natural numbers]] $n \in \mathbb{N}$ and one usually writes \begin{displaymath} [n] = \{0 \to 1 \to \cdots \to n\} \end{displaymath} for the object of $\Delta$ given by the category with $(n+1)$ [[object]]s. Geometrically one may think of this as the [[spine]] of the standard cellular $n$-[[simplex]], see the discussion of \hyperlink{SimplicialSets}{simplicial sets} below. In this context one also writes $\Delta[n]$ or $\Delta^n$ for the [[simplicial set]] [[representable functor|represented]] by the object $[n]$: the simplicial $n$-[[simplex]]. By the [[Yoneda lemma]] one may identify the subcategory of simplicial sets on the $\Delta[n]$ with $\Delta$. With this convention the first few objects of $\Delta$ are \begin{displaymath} [0] = \{0\} \end{displaymath} \begin{displaymath} [1] = \{0 \to 1\} \end{displaymath} \begin{displaymath} [2] = \{0 \to 1 \to 2\} \end{displaymath} etc. The category $\Delta_a$ contains one more object, corresponding to the empty category $\emptyset$. When sticking to the above standard notation for the objects of $\Delta$, that extra object is naturally often denoted \begin{displaymath} [-1] = \emptyset \,. \end{displaymath} However, in contexts where only $\Delta_a$ and not $\Delta$ plays a role, some authors prefer to start counting with 0 instead of with $-1$. Then for instance the notation \begin{displaymath} \mathbf{0} = \emptyset \end{displaymath} \begin{displaymath} \mathbf{1} = [0] = \{0\} \end{displaymath} \begin{displaymath} \mathbf{2} = [1] = \{0 \to 1\} \end{displaymath} and generally \begin{displaymath} \mathbf{n} = [n-1] \end{displaymath} may be used. \end{remark} \begin{prop} \label{}\hypertarget{}{} The [[skeleton|skeletal]] version of the \textbf{augmented simplex category} $\Delta_a$ can be presented as follows: \begin{itemize}% \item objects are the finite totally ordered sets $\mathbf{n} \coloneqq \{0 \lt 1 \lt \cdots \lt n-1\}$ for all $n \in \mathbb{N}$; \item morphisms \emph{generated} by (are all expressible as finite compositions of) the following two elementary kinds of maps \begin{enumerate}% \item \textbf{face maps}: $\;\delta_i^n :\: \mathbf{n-1} \hookrightarrow \mathbf{n}\;$ is the injection whose image leaves out $i \in [n]\quad$ ($n \gt 0$ and $0 \leq i \lt n$); \item \textbf{degeneracy maps}: $\;\sigma_i^n :\: \mathbf{n+1} \to \mathbf{n}\;$ is the surjection such that $\sigma_i(i) = \sigma_i(i+1) = i\quad$ ($n \gt 0$ and $0 \leq i \lt n$); \end{enumerate} \end{itemize} subject to the following relations, called the \textbf{simplicial relations} or \textbf{[[simplicial identities]]}: \begin{displaymath} \itexarray{ \delta_j^{n+1} \circ \delta_i^n = \delta_i^{n+1}\circ \delta_{j-1}^n & \qquad 0 \leq i \lt j \leq n \\ \sigma_j^n \circ \sigma_i^{n+1} = \sigma_i^n \circ \sigma_{j+1}^{n+1} & \qquad 0 \leq i \leq j \lt n } \end{displaymath} \begin{displaymath} \sigma_j^n \circ \delta_i^{n+1} = \left\lbrace \itexarray{ \delta_i^n \circ \sigma_{j-1}^{n-1} & \qquad 0 \leq i \lt j \lt n \\ Id_n & \quad 0 \leq j \lt n \quad and\quad i = j \;or\; i = j+1 \\ \delta^n_{i-1} \circ \sigma_{j}^{n-1} & \qquad 0 \leq j \quad and\quad j +1 \lt i \leq n } \right. \end{displaymath} \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ordinal}{}\subsubsection*{{Monoidal structure}}\label{ordinal} The addition of [[natural number]]s extends to a [[functor]] $\oplus : \Delta_a \times \Delta_a \to \Delta_a$ and $\oplus : \Delta \times \Delta \to \Delta$, by taking $\mathbf{m} \oplus \mathbf{n}$ to be the [[disjoint union]] of the underlying sets of $\mathbf{m}$ and $\mathbf{n}$, with the linear order that extends those on $\mathbf{m}$ and $\mathbf{n}$ by putting every element of $\mathbf{m}$ below every element of $\mathbf{n}$. This is called the \emph{[[ordinal sum]]} functor. If we visualise $\mathbf{n}$ as a totally ordered set $\{0 \lt 1 \lt \cdots \lt n-1\}$, and similarly for $\mathbf{m}$, then $\mathbf{m} \oplus \mathbf{n}$ looks like \begin{displaymath} \mathbf{m} \oplus \mathbf{n} = \{0 \lt 1 \lt \cdots \lt m-1 \lt 0^*\lt 1^* \lt \cdots \lt (n-1)^*\} \end{displaymath} where $k^*$ denotes $k$ considered as an element of $\mathbf{n}$. Clearly $\oplus : \Delta_a \times \Delta_a \to \Delta_a$ acts on objects as \begin{displaymath} \mathbf{n} \oplus \mathbf{m} = \mathbf{n+m}, \end{displaymath} On morphisms, given $f : \mathbf{m} \to \mathbf{m}'$ and $g : \mathbf{n} \to \mathbf{n}'$, we have \begin{displaymath} (f\oplus g)(i) = \left\lbrace \itexarray{ f(i) & if \; 0 \leq i \leq m - 1 \\ m' + g(i-m) & if \; m \leq i \leq (m+n-1) } \right. \,. \end{displaymath} so that $f \oplus g$ can be visualised as $f$ and $g$ placed side by side. It is easy to see now that $(\Delta_a,\oplus,\mathbf{0})$ is a [[strict monoidal category]]. It is important to note that this tensor does \emph{not} give a monoidal structure to $\Delta$, as that category does not contain the unit $\mathbf{0} = [-1] = \emptyset$. Also note that this [[monoidal structure]] is \emph{not} [[symmetric monoidal category|symmetric]]! One does have isomorphisms $\mathbf{m} \oplus \mathbf{n} \simeq \mathbf{n+m} \simeq \mathbf{n} \oplus \mathbf{m}$ for all $m,n$, but it is easy to see that they are not [[bifunctorial]]. Under [[Day convolution]] this monoidal structure induces the [[join of simplicial sets]]. \hypertarget{As2Categories}{}\subsubsection*{{$\Delta$ and $\Delta_a$ as 2-categories}}\label{As2Categories} Being full subcategories of the [[2-category]] $Cat$, $\Delta$ and $\Delta_a$ are themselves 2-categories: their [[2-cell|2-cells]] $f \Rightarrow g$ are given by the pointwise order on monotone functions. Equivalently, they are generated under (vertical and [[horizontal composition|horizontal]]) composition by the inequalities \begin{displaymath} \delta^n_{i+1} \leq \delta^n_i \qquad \qquad \sigma^n_i \leq \sigma^n_{i+1} \, . \end{displaymath} Of course, the ordinal sum functor $\oplus$ extends to a [[2-functor]] in the obvious way. For each $n$ there is \href{https://ncatlab.org/nlab/show/adjoint+string}{a string of adjunctions} \begin{displaymath} \delta^n_{n-1} \dashv \sigma^n_{n-2} \dashv \delta^n_{n-2} \dashv \cdots \dashv \delta^n_1 \dashv \sigma^n_0 \dashv \delta^n_0 \end{displaymath} where the counit of $\sigma_i \dashv \delta_i$ and the unit of $\delta_{i+1} \dashv \sigma_i$ are identities. For each $n \geq 2$, the object $\mathbf{n+1}$ is given by the [[pushout]] \begin{displaymath} \itexarray{ \mathbf{n-1} & \overset{\delta_0}{\to} & \mathbf{n} \\ \mathllap{\scriptsize{\delta_{n-1}}} \downarrow & & \downarrow \mathrlap{\scriptsize{\delta_n}} \\ \mathbf{n} & \underset{\delta_0}{\to} & \mathbf{n+1} } \end{displaymath} This means that $\Delta_a$ is generated as a 2-category by these pushouts and by taking adjoints of morphisms. Its monoidal structure is also determined in this way: for each $n$, write $\bot_n = \delta_{n-1}\cdots\delta_2\delta_1$ for the (morphism $\mathbf{1} \to \mathbf{n}$ corresponding to the) least element $0$ of $\mathbf{n}$, and $\top_n = \delta_0\cdots\delta_0\delta_0$ for the greatest. Then there are [[cospans]] $\mathbf{1} \to \mathbf{n} \leftarrow \mathbf{1}$ given by $\top_n$ and $\bot_n$, and each such is equivalent to the $(n-1)$ fold cospan composite (i.e. pushout) of $\mathbf{1} \to \mathbf{2} \leftarrow \mathbf{1}$ with itself. The ordinal sum $\mathbf{n} \oplus \mathbf{m}$ is given by the composite \begin{displaymath} \itexarray{ & & & & \mathbf{n} \oplus \mathbf{m} & & & & \\ & & & \nearrow & & \nwarrow & & & \\ & & \mathbf{n} & & & & \mathbf{m} & & \\ & \nearrow & & \nwarrow & & \nearrow & & \nwarrow & \\ \mathbf{1} & & & & \mathbf{1} & & & & \mathbf{1} } \end{displaymath} The universal property of pushouts, together with those of the initial and terminal objects $\mathbf{0},\mathbf{1}$, then suffices to define $\oplus$ as a 2-functor. \hypertarget{universal_properties}{}\subsubsection*{{Universal properties}}\label{universal_properties} The morphisms $\mathbf{0} \overset{\delta_0}{\to} \mathbf{1} \overset{\sigma_0}{\leftarrow} \mathbf{2}$ in $\Delta_a$ make $\mathbf{1}$ into a [[monoid object]]. Indeed, it is easy to see that \begin{displaymath} \begin{aligned} \delta^n_i & = \mathbf{i} \oplus \delta^0_0 \oplus \mathbf{n-i} \\ \sigma^n_i & = \mathbf{i} \oplus \sigma^1_0 \oplus \mathbf{n-i-1} \end{aligned} \end{displaymath} so that the morphisms of $\Delta_a$ are generated under $\circ$ and $\oplus$ by $\delta^0_0$ and $\sigma^1_0$, together with exactly the equations needed to make them the structure maps of the monoid $[1]$. The objects of $\Delta_a$ are the elements of the free monoid generated by $\mathbf{1}$ and $\oplus$. $\Delta_a$ thus becomes the universal category-equipped-with-a-monoid, in the sense that for any strict monoidal category $B$, there is a bijection between monoids $(M,m,e)$ in $B$ and strict [[monoidal functors]] $\Delta_a \to B$ such that $\mathbf{1} \mapsto M$, $\sigma_0 \mapsto m$ and $\delta_0 \mapsto e$. In particular, for $K$ a 2-category, [[monads]] in $K$ correspond to 2-functors $\mathbf{B}\Delta_a \to K$, where $\mathbf{B}\Delta_a$ is $\Delta_a$ considered as a one-object 2-category. Because monads in $K$ are also the same as [[lax functors]] $1 \to K$, this correspondence exhibits $\mathbf{B}\Delta_a$ as the [[lax morphism classifier]] for the terminal category $1$. When $\Delta_a$ is considered as a 2-category, a similar argument to the above shows that the one-object [[3-category]] $\mathbf{B}\Delta_a$ classifies [[lax-idempotent monads]]: given a 3-category $M$ and a lax-idempotent monad $t$ therein, there is a unique 3-functor $\mathbf{B}\Delta_a \to M$ sending $[1]$ to $t$, essentially because $\sigma^1_0 \dashv \delta^1_0 = \delta^0_0 \oplus \mathbf{1}$ with identity counit. \hypertarget{DualityWithIntervals}{}\subsubsection*{{Duality with intervals}}\label{DualityWithIntervals} Recall that an [[interval]] is a [[linearly ordered set]] with a top and bottom element; interval maps are [[monotone functions]] which preserve top and bottom. Parallel to the categories $\Delta$ and $\Delta_a$, let $\nabla$ denote the category of finite intervals where the top and bottom elements are \emph{distinct}, and let $\nabla_a$ denote the category of all finite intervals, including the terminal one where top and bottom coincide. Then we have [[duality|concrete dualities]], or equivalences of the form \begin{displaymath} \Delta_a^{op} \simeq \nabla_a; \qquad \Delta^{op} \simeq \nabla, \end{displaymath} both induced by the [[duality|ambimorphic object]] $\mathbf{2}$, seen as both an ordinal and an interval. In other words, we have in each case an adjoint equivalence \begin{displaymath} Int(-, \mathbf{2})^{op} \dashv Ord(-, \mathbf{2}) \end{displaymath} inducing the first equivalence $Ord(-, \mathbf{2}): \Delta_a^{op} \to \nabla_a$, and the second equivalence by restriction. This fact is mentioned in (\hyperlink{Joyal}{Joyal}), to help give some intuition for his [[Theta category|category]] $\Theta$ as dual to a category of disks. See also \emph{\href{interval#RelationToSimplices}{Interval -- Relation to simplices}}, and the section on dualities in (\hyperlink{Wraith}{Wraith}). \hypertarget{combinatorics}{}\subsubsection*{{Combinatorics}}\label{combinatorics} The homogenous symmetric function $h_m(x_1,x_2,{\dots},x_n)$ is the generating function for the set of all morphisms from $[m-1]$ to $[n-1]$. As an order-preserving function between finite ordinals, any morphism $f : \mathbf{m} \to \mathbf{n}$ in $\Delta_a$ is completely specified by fixing $k$ elements of $\mathbf{n}$ as the [[image]] of $f$, together with a [[partition\#of\_numbers|composition]] of $\mathbf{m}$ into $k$ parts, each part denoting a non-empty, contiguous subset of elements of $\mathbf{m}$ sharing their value of $f$. That is, each such composition is given by a collection of $k$ interval parts $[0,i_1], [i_1 + 1, i_2], \ldots, [i_{k-1}+1, m-1]$, determined by a $(k-1)$-element subset $\{i_1, \ldots, i_{k-1}\}$ of an $(m-1)$-element set $\{0, \ldots, m-2\}$. Hence, there are a total of \begin{displaymath} \sum_k \binom{n}{k} \binom{m-1}{k-1} = \sum_k \binom{n}{k} \binom{m-1}{m-k} = \binom{n+m-1}{m} \end{displaymath} different morphisms of type $\mathbf{m} \to \mathbf{n}$ in $\Delta_a$, where we obtain the expression on the right by applying the [[Chu–Vandermonde identity]]. For example, there are \begin{displaymath} \binom{2}{1}\binom{2}{0} + \binom{2}{2}\binom{2}{1} = 2+2 = 4 = \binom{4}{3} \end{displaymath} different morphisms $\mathbf{3} \to \mathbf{2}$, corresponding to the four functions \begin{enumerate}% \item $f(0) = f(1) = 0, f(2) = 1$ \item $f(0) = 0, f(1) = f(2) = 1$ \item $f(0) = f(1) = f(2) = 0$ \item $f(0) = f(1) = f(2) = 1$ \end{enumerate} A more direct [[bijective proof]] of the identity $|\Delta_a(\mathbf{m},\mathbf{n})| = \binom{n+m-1}{m}$ is also possible: see \href{http://nforum.ncatlab.org/discussion/3636/number-of-morphisms-in-the-simplex-category/?Focus=29835#Comment_29835}{this comment} on the nForum. As some interesting special cases, taking $m=n$ gives the number of monotone endofunctions on $\mathbf{n}$ (OEIS sequence \href{https://oeis.org/A088218}{A088218}, or \href{https://oeis.org/A001700}{A001700} if we consider endomorphisms $[n] \to [n] \in \Delta$), while taking $m=2$ gives the triangular numbers (OEIS sequence \href{https://oeis.org/A000217}{A000217}). \hypertarget{related_constructions}{}\subsection*{{Related constructions}}\label{related_constructions} \hypertarget{SimplicialSets}{}\subsubsection*{{Simplicial sets}}\label{SimplicialSets} [[presheaf|Presheaves]] on $\Delta$ are [[simplicial set|simplicial sets]]. Presheaves on $\Delta_a$ are \textbf{[[augmented simplicial sets]].} Under the [[Yoneda embedding]] $Y : \Delta \to$ [[SSet]] the object $[n]$ induces the standard simplicial $n$-[[simplex]] $Y([n]) =: \Delta^n$. So in particular we have $(\Delta^n)[m] = Hom_{\Delta}([m],[n])$ and hence $\Delta^n[m]$ is a finite set with $\binom{n+m+1}{n}$ elements. The face and degeneracy maps and the relation they satisfy are geometrically best understood in terms of the [[full and faithful functor|full and faithful]] image under $Y$ in [[SSet]]: \begin{itemize}% \item the face map $Y(\delta_i) : \Delta^{n-1} \to \Delta^{n}$ injects the standard simplicial $(n-1)$-simplex as the $i$th face into the standard simplicial $n$-simplex; \item the degeneracy map $Y(\sigma_i) : \Delta^{n+1} \to \Delta^{n}$ projects the standard simplicial $(n+1)$-simplex onto the standard simplicial $n$-simplex by collapsing its vertex number $i$ onto the face opposite to it. \end{itemize} \hypertarget{RealizationAndNerve}{}\subsubsection*{{Realization and nerve}}\label{RealizationAndNerve} There are important standard functors from $\Delta$ to other categories which \emph{[[nerve and realization|realize]]} $[n]$ as a concrete model of the standard $n$-[[simplex]]. \begin{itemize}% \item The functor $\Delta[-] : \Delta \to$ [[sSet]] (the [[Yoneda embedding]]) realizes $[n]$ as a [[simplicial set]]. \item The functor $|\cdot| : \Delta \to$ [[Top]] sends $[n]$ to the standard topological $n$-simplex $[n] \mapsto \{x_0 \leq x_1 \leq \cdots \leq x_n \leq 1\}\subset \mathbb{R}^{n}$. This functor induced [[geometric realization]] of [[simplicial sets]]. \item The functor $O : \Delta \to Str\omega Cat$ sends $[n]$ to the $n$th [[oriental]]. This induces simplicial [[nerves]] of [[omega-category|omega-categories]]. Under the functor $Str \omega Cat \to Cat$ which discards all higher morphisms and identifies all 1-morphisms that are connected by a 2-morphisms, this becomes again the identification of $\Delta$ with the full subbcategory of $Cat$ on linear [[quivers]] that we started the above definition with \begin{displaymath} [n] \mapsto \{0 \to 1 \to \cdots \to n\} \,. \end{displaymath} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[geometric shapes for higher structures]] \begin{itemize}% \item \textbf{simplex category} \item [[cube category]] \item [[globe category]] \item [[cell category]] \item [[Segal's category]] \end{itemize} \item [[simplicial set]] \item [[augmented simplicial set]] \item [[join of simplicial sets]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See the references at [[simplicial set]]. See also: \begin{itemize}% \item Section VII.5 of [[Categories Work|Categories for the Working Mathematician]] \item Section II.2 of P. Gabriel and M. Zisman, \emph{Calculus of Fractions and Homotopy Theory}. Springer, 1967 \item Section 2, Doctrines, of [[Ross Street]], \href{http://www.numdam.org/item?id=CTGDC_1980__21_2_111_0}{\emph{Fibrations in Bicategories}}, 1980 \end{itemize} The relation to [[intervals]] and the generalization to the [[cell category]] is due to \begin{itemize}% \item [[André Joyal]], \emph{Disks, duality and $\Theta$-categories}, preprint, 1997 (\href{http://ncatlab.org/nlab/files/JoyalThetaCategories.pdf}{pdf}) \end{itemize} A discussion of the opposite categories of $\Delta, \Delta_a$ and related categories can be found here: \begin{itemize}% \item [[Gavin C. Wraith]], \emph{Using the generic interval}, Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXIV} 4 (1993) pp.259-266. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1993__34_4/CTGDC_1993__34_4_259_0/CTGDC_1993__34_4_259_0.pdf}{pdf}) \end{itemize} [[!redirects augmented simplex category]] category: category \end{document}