\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial T-complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{simplicial_complex_the_definition}{SImplicial $T$-complex: the definition}\dotfill \pageref*{simplicial_complex_the_definition} \linebreak \noindent\hyperlink{results}{Results}\dotfill \pageref*{results} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{simplicial T-complex} is a [[Kan complex]] equipped with a \emph{choice} of [[horn]] fillers, which satisfy certain `equations'. It is thus a special case of an [[algebraic Kan complex]]. There is quite a difference between the [[Kan complex]] structure \begin{enumerate}% \item of the [[nerve|nerve]] $N(\mathcal{G})$ of a [[groupoid]], $\mathcal{G}$, \item and that of, say, a [[path infinity-groupoid|singular complex]] $Sing X$ of some [[topological space]] $X$. \end{enumerate} In the first, if we are given a $(n,i)$-[[horn]], then there is \emph{exactly one} $n$-simplex in $Ner(G)$, since the $(n,i)$-horn has a chain of $n$-composable arrows of $G$ in it (at least unless $(n,i) = (2,0)$ or $(2,2)$, which cases are slightly different) and that chain gives the required $n$-simplex. In other words, there is a `canonical' filler for any horn. In $Sing(X)$, there will usually be many fillers; however the fact that this simplicial set is Kan is a property of retractions on standard simplices, and is not specifically a property of the space $X$ - that is the basic intuition. Abstracting, in part, from this idea, Brown and Higgins developed the idea of a [[cubical T-complex]]. This was a [[cubical set|cubical set]] with in each dimension $n$, a subset of the $n$-[[cube]]s being declared \emph{`thin'}. The term was adopted to indicate that they, somehow, were of lower dimension than they looked to be. The theory was initiated in a simplicial context in the 1977 Bangor thesis of Keith Dakin listed below, and used by Brown and Higgins who showed that cubical $T$-complexes were equivalent to [[crossed complex|crossed complexes]]. The corresponding simplicial $T$-complex theory was further developed in the 1978 Bangor thesis of Nick Ashley, (see below for publication). \hypertarget{simplicial_complex_the_definition}{}\subsection*{{SImplicial $T$-complex: the definition}}\label{simplicial_complex_the_definition} \begin{udefn} A \emph{simplicial $T$-complex} is a pair $(K,T)$, where $K$ is a [[simplicial set|simplicial set]] and $T = (T_n)_{n\geq 1}$ is a graded subset of $K$ with $T_n\subseteq K_n$. Elements of $T$ are called \emph{[[thin]]}. The thin structure satisfies the following axioms: \begin{itemize}% \item Every degenerate element is thin. \item Every [[horn]] in $K$ has a unique thin filler. \item If all faces but one of a thin element are thin, then so also is the remaining face. \end{itemize} \end{udefn} \begin{uex} \begin{enumerate}% \item A closely related idea is that of [[group T-complex]]. Group $T$-complexes form a category equivalent to reduced [[crossed complex]]es. Any group $T$-complex has an underlying simplicial set, which is a simplicial $T$-complex. \item The nerve of a [[crossed complex]] has a natural T-complex structure. In a bit more detail, if $\mathsf{C}$ is a crossed complex, its nerve is given by $Ner(\mathsf{C})_n = Crs(\pi(n),\mathsf{C})$, where $\pi(n)$ is the free crossed complex on the $n$-simplex, $\Delta[n]$. This singular complex description shows that if we have an $n$-simplex $f : \pi(n) \to \mathsf{C}$, and declare it to be $\backslash$emph\{thin\} if the image $f(\iota_n)$ of the top dimensional generator in $\pi(n)$ is trivial, then the resulting collection of thin simplices determines a $T$- complex structure on the nerve. \end{enumerate} \end{uex} \hypertarget{results}{}\subsubsection*{{Results}}\label{results} \begin{itemize}% \item Simplical $T$-complexes together with maps between them which preserve `thinness' form a category that is equivalent to that of [[crossed complexes]] and thus to strict $\infty$-groupoids. The uniqueness of the thin filler is exactly what gives a definite composition in the model. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[T-complex]] \begin{itemize}% \item \textbf{simplicial $T$-complex} \item [[cubical T-complex]] \item [[group T-complex]] \end{itemize} \item [[algebraic Kan complex]] \end{itemize} Together with very similar ideas of [[John Roberts]], adapted by [[Ross Street]], the notion of $T$-complex is one of the precursors of [[Dominic Verity]]`s notion of [[complicial set|complicial set]]. They are also related to [[Jack Duskin]]`s notion of [[hypergroupoid]]. (The connection is explored in the papers by Nan Tie listed below.) \hypertarget{references}{}\subsection*{{References}}\label{references} Relevant references for simplicial T-complexes include: \begin{itemize}% \item [[Ronnie Brown]], \emph{An Introduction to simplicial T-complexes}, \href{http://ehres.pagesperso-orange.fr/Cahiers/brownem32.pdf}{Esquisses Math. 32 (1983) Part 1} \item M.K. Dakin, \emph{Kan complexes and multiple groupoid structures}, Ph.D Thesis, University of Wales, Bangor, 1977. \href{http://ehres.pagesperso-orange.fr/Cahiers/dakinEM.pdf}{Esquisses Math. (1983) 32 Part 2} \item N. Ashley, \emph{Simplicial T-Complexes: a non abelian version of a theorem of Dold-Kan}, Ph.D Thesis University of Wales, Bangor, 1978; \href{https://eudml.org/doc/268359}{Dissertationes Math., 165, (1989), 11 -- 58}. \href{http://ehres.pagesperso-orange.fr/Cahiers/AshleyEM32.pdf}{Esquisses Math. (1983) 32 Part 3} \item G. Nan Tie, \emph{A Dold-Kan theorem for crossed complexes}, J. Pure Appl. Alg., 56, (1989.), 177 --- 194. \item G. Nan Tie, \emph{Iterated W and T-groupoids}, J. Pure Appl. Alg., 56, (1989), 195 --- 209. \item [[Ronnie Brown]], and [[P.J. Higgins]], \emph{On the algebra of cubes} J. Pure Appl. Algebra 21 (1981) 233--260. \item R. Brown, and P.J. Higgins, \emph{The equivalence of $\omega$-groupoids and cubical $T$-complexes} Cahiers Topologie G'eom. Diff'erentielle 22 (1981) 349--370. \end{itemize} [[!redirects simplical T-complex]] [[!redirects simplicial T-complexes]] \end{document}