\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial de Rham complex} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{differential_forms_on_}{Differential forms on $\mathbf{B}G$}\dotfill \pageref*{differential_forms_on_} \linebreak \noindent\hyperlink{reformulations_in_synthetic_differential_geometry}{Reformulations in synthetic differential geometry}\dotfill \pageref*{reformulations_in_synthetic_differential_geometry} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{simplicial de Rham complex} of a [[simplicial manifold]] $X_\bullet$ is the analog of the [[de Rham complex]] of [[differential form]]s of an ordinary [[manifold]]: it is the complex whose elements in degree $k$ may be thought of as $k$-[[differential form|form]]s on $X_\bullet$. One useful conceptual way to think of this is to notice that a a [[simplicial object|simplicial]] [[manifold]] may be thought of as a degreewise [[representable functor|representable]] [[simplicial presheaf]] on [[Diff]] and then to realize that by way of the standard [[model structure on simplicial presheaves]] such a simplicial presheaf presents an [[∞-stack]] on [[Diff]] which we may think of as a [[Lie ∞-groupoid]]. From that perspective we expect that \textbf{Slogan}. The simplicial de Rham complex is the complex of differential forms on a geometric [[∞-Lie groupoid]]. We shall discuss this in more detail below. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are several definitions that are [[quasi-isomorphism|quasi-isomorphic]]. The first one we give is the conceptually most straightforward one. The second one we give is sometimes more useful in computations. Let $X_\bullet : \Delta^{op} \to Diff$ be a [[simplicial object|simplicial]] [[manifold]]. \begin{defn} \label{}\hypertarget{}{} \textbf{(simplicial de Rahm complex, first version)} Write \begin{displaymath} \mathcal{A}(X_\bullet) := Tot \Omega^\bullet(X_\bullet) \end{displaymath} for the [[cochain complex]] that is the [[total complex]] of the [[double complex]] on the degreewise [[de Rham complex]] with one differential the simplicial-degree-wise de Rham differential and the other one the de Rham-degree-wise alternating sum of pullback along the face maps \begin{displaymath} \itexarray{ \Omega^p(X_q) &\stackrel{\sum_i (-1)^i \delta_i^*}{\to} & \Omega^{p}(X_{q+1}) \\ \downarrow^{d_{dR}} && \downarrow^{d_{dR}} \\ \Omega^{p+1}(X_q) &\stackrel{\sum_i (-1)^i \delta_i^*}{\to} & \Omega^{p+1}(X_{q+1}) } \,. \end{displaymath} \end{defn} So an element $\omega \in \mathcal{A}(X_\bullet)$ in degree $n$ is a collection $(\omega^p_q \in \Omega^p(X_q))_{p+q = n}$ of ordinary differential forms. \begin{defn} \label{}\hypertarget{}{} \textbf{(simplicial de Rahm complex, second version)} Write $\Delta^n_{Diff}$ for the standard $n$-[[simplex]] in its standard incarnations as a smooth [[manifold]] (with boundary). These arrange in the obvious way into the [[cosimplicial object]] $\Delta_{Diff} : \Delta \to Diff$. Say that a differential form $\omega^p_q \in \Omega^\bullet(\Delta^p_{Diff}\times X_q)$ is \emph{compatible} if for each face map $\delta_i$ we have \begin{quote}% (some condition, need to look something up\ldots{}) \end{quote} There is a decomposition \begin{displaymath} \Omega^n(\Delta^p_{Diff} \times X_q) \simeq \oplus_{k+l=n} \Omega^k(\Delta^p_{Diff}) \otimes_{C^\infty(\Delta^p_{Diff} \times X_q)} \Omega^l(X_q) \,. \end{displaymath} This defines a bidegree and $A(X_\bullet)$ is the obvious total complex of the obvious double complex here \begin{quote}% will polish this up later\ldots{} \end{quote} \end{defn} The following proposition says that and how these two complexes are related. \begin{prop} \label{}\hypertarget{}{} \textbf{(Dupont)} Consider the map between the two [[double complex]]es involved above which integrates each element in degree $(p,q)$ over $\Delta^p_{Diff}$. This induces a map on the corresponding total complexes \begin{displaymath} \int_\Delta : A(X_\bullet) \to \mathcal{A}(X_\bullet) \,. \end{displaymath} This is a [[morphism]] of [[cochain complex]]es which is a [[quasi-isomorphism]]. \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{differential_forms_on_}{}\subsubsection*{{Differential forms on $\mathbf{B}G$}}\label{differential_forms_on_} A main application of this technology is to the simplicial manifold $\mathbf{B}G = (\cdots G \times G \stackrel{\stackrel{\to}{\to}}{\to} G \stackrel{\to}{\to} {*})$ that represents the smooth groupoid which is the [[delooping]] of a [[Lie group]] $G$. Dupont exhibits a [[Chern-Weil homomorphism]] \begin{displaymath} I(G) \to A(\mathbf{B}G) \end{displaymath} and constructs a canonical [[connection on a bundle|connection]] on the [[generalized universal bundle|universal G-principal-bundle]] \begin{displaymath} \mathbf{E}G \to \mathbf{B}G \end{displaymath} (which, in traditional [[simplicial group]] notation, reads $W G \to \bar W G$ -- but recall that these are ``Lie'' simplicial groups here). \hypertarget{reformulations_in_synthetic_differential_geometry}{}\subsection*{{Reformulations in synthetic differential geometry}}\label{reformulations_in_synthetic_differential_geometry} [[Urs Schreiber]]: This section is supposed to provide a useful reformulation of the simplicial de Rham complex in the context described at [[schreiber:∞-Lie theory]]. In the language uses there, the statement we establish is the following: \begin{prop} \label{}\hypertarget{}{} Let $C =$ [[CartSp]]${}_{th}$ and $\mathbf{H} = (sPSh(C)_{proj}^{loc})^\circ$ the [[(∞,1)-category of (∞,1)-sheaves]] on [[CartSp]], the [[(∞,1)-topos]] of [[Lie ∞-groupoid]]s. This is a [[locally contractible (∞,1)-topos]] (as discussed there). Accordinly we have its [[schreiber:path ∞-groupoid]] and [[schreiber:infinitesimal path ∞-groupoid]] $\mathbf{\Pi}_{inf}(-)$. Then \begin{itemize}% \item the [[schreiber:Chevalley-Eilenberg algebra]] of $\mathbf{\Pi}_{inf}(X)$ is [[quasi-isomorphism|quasi-isomorphic]] to the simplicial de Rham complex \begin{displaymath} CE( \Pi^{inf}(X)) \simeq \mathcal{A}(X_\bullet) \,. \end{displaymath} \end{itemize} \end{prop} The following discussion breaks this down and then describes the proof. As a preparation, recall from the discussion at [[differential forms in synthetic differential geometry]] that if we pass from [[Diff]] to a [[smooth topos]] $(\mathcal{T},R)$ that models the axioms of [[synthetic differential geometry]], then for sufficiently well-behaved objects $X \in \mathcal{T}$ there is the [[infinitesimal singular simplicial complex]] $X^{(\Delta^\bullet_{inf})} : \Delta^{op} \to \mathcal{T}$, the [[simplicial object]] that in degree $k$ is the [[space]] of [[infinitesimal object|infinitesimal]] $k$-[[simplex|simplices]] in $X$. As discussed there, this is such that under the [[Dold-Kan correspondence]] the [[cosimplicial algebra]] $Hom( X^{\Delta^\bullet_{inf}}, R )$ maps to the [[de Rham complex]] (and under the [[monoidal Dold-Kan correspondence]] to the full [[de Rham dg-algebra]]): \begin{displaymath} C_{Moore} : C^\infty( X^{(\Delta^\bullet_{inf}})) \mapsto \Omega^\bullet(X) \,. \end{displaymath} It would be nice to have an analog of this statement for simplicial objects and the simplicial de Rham complex. I am thinking that the answer should be the following: Let $X_\bullet : \Delta^{op} \to \mathcal{T}$ be a [[simplicial object]] that is degreewise of the sort such that the [[infinitesimal singular simplicial complex]] $(X_n)^{\Delta^\bullet_{inf}}$ exists. Use that $\mathcal{T}$ is canonically [[copower|tensored]] over $Set$ to find that simplicial objects in $\mathcal{T}$ are canonically tensored over [[simplicial set]]s. Then consider the \emph{realization} \begin{displaymath} \mathbf{\Pi}_{inf}(X_\bullet) := \int^{[n] \in \Delta} \Delta[n] \cdot X_n^{(\Delta^{\bullet}_{inf})} \end{displaymath} where \begin{itemize}% \item $\Delta[n]$ is the standard [[simplicial set|simplicial]] $n$-[[simplex]] \item the integrand is the tensor operatoin of simplicial objects by simplicial sets \item the integral sign denotes the [[coend]]. \end{itemize} By the lemma \emph{expression in terms of simplicial realization} at [[schreiber:infinitesimal path ∞-groupoid]] this is the same as $\mathbf{\Pi}_{inf}(X)$. The above proposition now reads in pedestrian terms: \begin{prop} \label{}\hypertarget{}{} The [[Moore complex|Moore cochain complex]] of the [[cosimplicial algebra]] $C^\infty(\mathbf{\Pi}_{inf}(X_\bullet)) := Hom_{\mathcal{T}}(\mathbf{\Pi}_{inf}(X_\bullet),R)$ is [[quasi-isomorphism|quasi-isomorphic]] to the simplicial de Rham complex of $X_\bullet$. \end{prop} \begin{proof} We use the cosimplicial and the simplicial version of the [[Eilenberg-Zilber theorem]] together with the fact that for a [[bisimplicial set]] the diagonal is given by the realization (as discussed there) $Diag F_{\bullet,\bullet} \simeq \int^{[n] \in \Delta} \Delta[n] \cdot F_{n,\bullet}$ to compute \begin{displaymath} \begin{aligned} C ( C^\infty(\mathbf{\Pi}_{inf}(X_\bullet)) ) & := C ( Hom( \int^{[n]} \Delta[n] \cdot X_n^{(\Delta^\bullet_{inf})} , R)) \\ & \simeq C ( Hom( Diag X_\bullet^{(\Delta^\bullet_{inf})} , R)) \\ & \simeq C Diag Hom( X_\bullet^{(\Delta^\bullet_{inf})} ,R) \\ & \simeq_{q i} Tot C Hom( X_\bullet^{(\Delta^\bullet_{inf})} ,R) \\ & \simeq Tot \Omega^\bullet(X_\bullet) \,. \end{aligned} \end{displaymath} Here in the last step we used the following reasoning on the [[bisimplicial object]] $([p],[q]) \mapsto (X_p)^{(\Delta^q_{inf})}$. We know that \begin{itemize}% \item for fixed $p$, the normalized [[Moore complex]] of the [[cosimplicial algebra]] $Hom((X_p)^{(\Delta^\bullet_{inf})},R)$ is the [[de Rham complex]] of $X_p$ -- this is the statement about combinatorial [[differential forms in synthetic differential geometry]]. \item for fixed $q$ the [[Moore complex]] of the [[cosimplicial algebra]] $Hom((X_\bullet)^{((\Delta^q_{inf}))}, R)$ is the complex of functions on simplices whose differential is the alternating sum of pullbacks along face maps -- by the very definition of the [[Moore complex]]. \end{itemize} This means that the simplicial de Rham complex is (quasi-isomorphic to) the total complex of the bi-cosimplicial algebra \begin{displaymath} \mathcal{A}(X_\bullet) \simeq Tot C(Hom((X_\bullet)^{(\Delta^\bullet_{inf})}, R)) \,. \end{displaymath} So it remains to show that this total complex is also (quasi-isomorphic to) the [[Moore complex]] of $Hom(\mathbf{\Pi}_{inf}(X_\bullet),R)$. For this use \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-4.dvi}{exercise 1.6 here} which says (transported from [[Set]] to $\mathcal{T}$) that this is the diagonal [[simplicial object]] of our [[bisimplicial object]] \begin{displaymath} d((X_\bullet)^{\Delta^\bullet_{inf}}) \simeq \int^{[n]} \Delta^n \cdot (X_n)^{(\Delta^\bullet_{inf})} \,. \end{displaymath} This implies that the [[Moore complex]] of $Hom(\mathbf{\Pi}_{inf}(X_\bullet),R)$ is the Moore complex of the diagonal of the bisimplicial algebra $Hom(X_\bullet^{(\Delta^\bullet_{inf})}),R)$. This way the desired statement recudes to the quasi-isomorphism \begin{displaymath} diag (Hom(\mathbf{\Pi}_{inf}(X_\bullet),R) \simeq Tot (Hom(\mathbf{\Pi}_{inf}(X_\bullet),R) \,. \end{displaymath} But this (even their chain-homotopy equivalence) is the content of the generalized [[Eilenberg-Zilber theorem]]. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} Canonical references on simplicial de Rham cohomology are by [[Johan Louis Dupont]]. For instance \begin{itemize}% \item [[Johan Louis Dupont]], \emph{Simplicial de Rham Cohomology and characteristic classes of flat bundles} Topology 15 (1976) \item [[Johan Louis Dupont]], \emph{A dual simplicial de Rham complex}, Lecture notes in Mathematics 1318 (1988) (\href{http://www.springerlink.com/content/65784420x146888h/}{journal}) \item chaper 3 in \emph{Curvature and Characteristic Classes} \end{itemize} \begin{quote}% (I am still looking for the best survey reference\ldots{}) \end{quote} When restricted to low degree this is closely related to or synonymous to considerations of de Rham cohomology in the context of [[differentiable stack]]s. \begin{quote}% (need to dig out references) \end{quote} A [[de Rham theorem]] for simplicial manifolds was proven in the classical \begin{itemize}% \item [[Raoul Bott]], [[Herbert Shulman]], [[Jim Stasheff]], \emph{On the de Rham theory of certain classifying spaces}, Advances in Mathematics, Volume 20, Issue 1, April 1976, Pages 43-56 (, \href{https://core.ac.uk/download/pdf/82496263.pdf}{pdf}) \end{itemize} In principle closely related is the discussion of a de Rham theorem for [[∞-stack]]s as discussed in \begin{itemize}% \item [[nLab:Carlos Simpson|Carlos Simpson]], [[nLab:Constantin Teleman|Constantin Teleman]], \emph{de Rham theorem for $\infty$-stacks} (\href{http://math.berkeley.edu/~teleman/math/simpson.pdf}{pdf}) \end{itemize} though a simplicial de Rham complex is only somewhat implicit in that article. [[!redirects simplicial deRham complex]] \end{document}