\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial homotopy group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_topological_homotopy_groups}{Relation to topological homotopy groups}\dotfill \pageref*{relation_to_topological_homotopy_groups} \linebreak \noindent\hyperlink{relation_to_homotopy_equivalence}{Relation to homotopy equivalence}\dotfill \pageref*{relation_to_homotopy_equivalence} \linebreak \noindent\hyperlink{relation_to_chain_homology_groups_of_associated_moore_complexes}{Relation to chain homology groups of associated Moore complexes}\dotfill \pageref*{relation_to_chain_homology_groups_of_associated_moore_complexes} \linebreak \noindent\hyperlink{long_exact_sequences_of_a_kan_fibration}{Long exact sequences of a Kan fibration}\dotfill \pageref*{long_exact_sequences_of_a_kan_fibration} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Simplicial homotopy groups are the basic invariants of [[simplicial sets]]/[[Kan complexes]] in [[simplicial homotopy theory]]. Given that a [[Kan complex]] is a special [[simplicial set]] that [[homotopy hypothesis|behaves like]] a combinatorial model for a [[topological space]], the \emph{simplicial homotopy groups} of a Kan complex are accordingly the combinatorial analog of the [[homotopy groups]] of [[topological spaces]]: instead of being maps from topological [[spheres]] modulo maps from topological disks, they are maps from the [[boundary of a simplex]] modulo those from the [[simplex]] itself. Accordingly, the definition of the discussion of simplicial homotopy groups is essentially literally the same as that of [[homotopy groups]] of topological spaces. One technical difference is for instance that the definition of the group structure is slightly more non-immediate for simplicial homotopy groups than for topological homotopy groups (see below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall the classical [[model structure on simplicial sets]]. Let $X$ be a fibrant simplicial set, i.e. a [[Kan complex]]. \begin{defn} \label{UnderlyingSetsOfSimplicialHomotopyGroups}\hypertarget{UnderlyingSetsOfSimplicialHomotopyGroups}{} For $X$ a [[Kan complex]], then its \textbf{0th homotopy group} (or \textbf{set of [[connected components]]}) is the set of [[equivalence classes]] of vertices modulo the [[equivalence relation]] $X_1 \stackrel{(d_1,d_0)}{\longrightarrow} X_0 \times X_0$ \begin{displaymath} \pi_0(X) \colon X_0/X_1 \,. \end{displaymath} For $x \in X_0$ a vertex and for $n \in \mathbb{N}$, $n \geq 1$, then the underlying [[set]] of the \textbf{$n$th homotopy group} of $X$ at $x$ -- denoted $\pi_n(X,x)$ -- is, the set of [[equivalence classes]] $[\alpha]$ of morphisms \begin{displaymath} \alpha \colon \Delta^n \to X \end{displaymath} from the simplicial $n$-[[simplex]] $\Delta^n$ to $X$, such that these take the [[boundary of a simplex|boundary of the simplex]] to $x$, i.e. such that they fit into a [[commuting diagram]] in [[sSet]] of the form \begin{displaymath} \itexarray{ \partial \Delta[n] & \longrightarrow & \Delta[0] \\ \downarrow && \downarrow^{\mathrlap{x}} \\ \Delta[n] &\stackrel{\alpha}{\longrightarrow}& X } \,, \end{displaymath} where two such maps $\alpha, \alpha'$ are taken to be equivalent is they are related by a [[simplicial homotopy]] $\eta$ \begin{displaymath} \itexarray{ \Delta[n] \\ \downarrow^{i_0} & \searrow^{\alpha} \\ \Delta[n] \times \Delta[1] &\stackrel{\eta}{\longrightarrow}& X \\ \uparrow^{i_1} & \nearrow_{\alpha'} \\ \Delta[n] } \end{displaymath} that fixes the boundary in that it fits into a [[commuting diagram]] in [[sSet]] of the form \begin{displaymath} \itexarray{ \partial \Delta[n] \times \Delta[1] & \longrightarrow & \Delta[0] \\ \downarrow && \downarrow^{\mathrlap{x}} \\ \Delta[n] \times \Delta[1] &\stackrel{\eta}{\longrightarrow}& X } \,. \end{displaymath} \end{defn} These sets are taken to be equipped with the following group structure. \begin{defn} \label{ProductOnSimplicialHomotopyGroups}\hypertarget{ProductOnSimplicialHomotopyGroups}{} For $X$ a [[Kan complex]], for $x\in X_0$, for $n \geq 1$ and for $f,g \colon \Delta[n] \to X$ two representatives of $\pi_n(X,x)$ as in def. \ref{UnderlyingSetsOfSimplicialHomotopyGroups}, consider the following $n$-simplices in $X_n$: \begin{displaymath} v_i \coloneqq \left\{ \itexarray{ s_0 \circ s_0 \circ \cdots \circ s_0 (x) & for \; 0 \leq i \leq n-2 \\ f & for \; i = n-1 \\ g & for \; i = n+1 } \right. \end{displaymath} This corresponds to a morphism $\Lambda^{n+1}[n] \to X$ from a [[horn]] of the $(n+1)$-[[simplex]] into $X$. By the [[Kan complex]] property of $X$ this morphism has an [[extension]] $\theta$ through the $(n+1)$-[[simplex]] $\Delta[n]$ \begin{displaymath} \itexarray{ \Lambda^{n+1}[n] & \longrightarrow & X \\ \downarrow & \nearrow_{\mathrlap{\theta}} \\ \Delta[n+1] } \end{displaymath} From the [[simplicial identities]] one finds that the boundary of the $n$-simplex arising as the $n$th boundary piece $d_n \theta$ of $\theta$ is constant on $x$ \begin{displaymath} d_i d_{n} \theta = d_{n-1} d_i \theta = x \end{displaymath} So $d_n \theta$ represents an element in $\pi_n(X,x)$ and we define a product operation on $\pi_n(X,x)$ by \begin{displaymath} [f]\cdot [g] \coloneqq [d_n \theta] \,. \end{displaymath} \end{defn} (e.g. \hyperlink{GoerssJardine96}{Goerss-Jardine 96, p. 26}) \begin{remark} \label{}\hypertarget{}{} All the degenerate $n$-simplices $v_{0 \leq i \leq n-2}$ in def. \ref{ProductOnSimplicialHomotopyGroups} are just there so that the gluing of the two $n$-cells $f$ and $g$ to each other can be regarded as forming the boundary of an $(n+1)$-simplex except for one face. By the Kan extension property that missing face exists, namely $d_n \theta$. This is a choice of gluing composite of $f$ with $g$. \end{remark} \begin{lemma} \label{}\hypertarget{}{} The product on homotopy group elements in def. \ref{ProductOnSimplicialHomotopyGroups} is well defined, in that it is independent of the choice of representatives $f$, $g$ and of the extension $\theta$. \end{lemma} e.g. (\hyperlink{GoerssJardine96}{Goerss-Jardine 96, lemma 7.1}) \begin{lemma} \label{}\hypertarget{}{} The product operation in def. \ref{ProductOnSimplicialHomotopyGroups} yields a [[group]] structure on $\pi_n(X,x)$, which is [[abelian group|abelian]] for $n \geq 2$. \end{lemma} e.g. (\hyperlink{GoerssJardine96}{Goerss-Jardine 96, theorem 7.2}) Finally: \begin{defn} \label{}\hypertarget{}{} The simplicial homotopy groups of any [[simplicial set]], not necessarily [[Kan complex|Kan]], are those of any of its [[Kan fibrant replacements]] according to def. \ref{UnderlyingSetsOfSimplicialHomotopyGroups}. \end{defn} \begin{remark} \label{}\hypertarget{}{} The first homotopy group, $\pi_1(X,x)$, is also called the \emph{[[fundamental group]]} of $X$. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_topological_homotopy_groups}{}\subsubsection*{{Relation to topological homotopy groups}}\label{relation_to_topological_homotopy_groups} The simplicial homotopy groups of a Kan complex coincide with the homotopy groups of its [[geometric realization]], see e.g. (\hyperlink{GoerssJardine96}{Goerss-Jardine 96, page 60}). \hypertarget{relation_to_homotopy_equivalence}{}\subsubsection*{{Relation to homotopy equivalence}}\label{relation_to_homotopy_equivalence} A morphism of simplicial sets which induces an [[isomorphism]] on all simplicial homotopy groups is called a [[weak homotopy equivalence]]. If it goes between [[Kan complexes]] then it is actually a [[homotopy equivalence]]. \hypertarget{relation_to_chain_homology_groups_of_associated_moore_complexes}{}\subsubsection*{{Relation to chain homology groups of associated Moore complexes}}\label{relation_to_chain_homology_groups_of_associated_moore_complexes} Another way to get the group structure on the homotopy groups of a Kan complex, $X$, is via its [[Dwyer-Kan loop groupoid]] and the [[Moore complex]]. This gives a [[simplicial groupoid|simplicially enriched groupoid]] $G(X)$, or if we restricted to the pointed case, and just look at the loops at the base vertex, a [[simplicial group]]. (We will assume for the sake of simplicity that $X$ is \emph{reduced}, that is to say, $X_0$ is a singleton, and thus that $G(X)$ is a simplicial group.) The construction of $G(X)$ is then given by the free group functor on the various levels, shifted by 1, and with a twist in the zeroth face map (see [[Dwyer-Kan loop groupoid]] and simplify to the reduced case.) \begin{prop} \label{}\hypertarget{}{} There is an isomorphism between $\pi_n(X)$ as defined above and $H_{n-1}(N G(X))$, the $(n-1)$th homology group of the [[Moore complex]] of the simplicial group, $G(X)$. \end{prop} \hypertarget{long_exact_sequences_of_a_kan_fibration}{}\subsubsection*{{Long exact sequences of a Kan fibration}}\label{long_exact_sequences_of_a_kan_fibration} For $f \colon X \longrightarrow Y$ a [[Kan fibration]], for $x\in X_0$ any vertex, for $y \coloneqq f(x) \in Y$ its image and $F_x \coloneqq f^{-1}(y)$ the [[fiber]] at that point, then the induced [[homomorphism]] of simplicial homotopy groups form a [[long exact sequence of homotopy groups]] \begin{displaymath} \cdots \to \pi_{n+1}(Y,y) \stackrel{}{\longrightarrow} \pi_n(F,x) \stackrel{}{\longrightarrow} \pi_n(X,x) \stackrel{}{\longrightarrow} \pi_n(Y,y) \stackrel{}{\longrightarrow} \pi_{n-1}(F,x) \to \cdots \end{displaymath} \begin{displaymath} \cdots \to \pi_1(F,x) \longrightarrow \pi_0(F) \stackrel{}{\longrightarrow} \pi_0(X) \longrightarrow \pi_0(Y) \end{displaymath} i.e. a [[long exact sequence]] of [[groups]] ending in a long exact sequence of [[pointed sets]]. (e.g. \hyperlink{GoerssJardine96}{Goerss-Jardine 96, lemma 7.3}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{lemma} \label{}\hypertarget{}{} Let $C$ be a [[groupoid]] and $\mathcal{N}(C)$ its [[nerve]]. Then \begin{itemize}% \item $\pi_0 \mathcal{N}(C,c)$ is the set of isomorphism classes of $C$ with the class of $c$ as base point \item $\pi_1 \mathcal{N}(C,c)$ is the [[automorphism group]] $Aut_C(c)$ of $c$ \item $\pi_{n \geq 2} \mathcal{N}(C,c)$ is trivial \end{itemize} \end{lemma} In particular a [[functor]] $f : C \to D$ of [[groupoids]] is a [[equivalence of categories]] if under the nerve it induces a weak equivalence $\mathcal{N}(f) : \mathcal{N}(C) \to \mathcal{N}(D)$ of [[Kan complexes]]: \begin{itemize}% \item that $\pi_0 \mathcal{N}(f,c) : \pi_0(C,c) \to \pi_0(D,f(c))$ is an isomorphism implies that $f$ is an [[essentially surjective functor]] and is implied by $f$'s being a [[full functor]]; \item that $\pi_1 \mathcal{N}(f,c) : \pi_1(C,c) \to \pi_1(D,f(c))$ is an isomorphism is equivalent to $f$'s being a [[full and faithful functor]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Textbook accounts include \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], chapter I, section 7 of \emph{[[Simplicial homotopy theory]]}, Progress in Mathematics, Birkh\"a{}user (1996) \end{itemize} Originally homotopy groups of simplicial sets had been defined in terms of the ordinary [[homotopy groups]] of the [[topological spaces]] [[geometric realization|realizing]] them. Apparently the first or one of the first discussions of the purely combinatorial definition is \begin{itemize}% \item [[Dan Kan]], \emph{A combinatorial definition of homotopy groups}, Annals of Mathematics Second Series, Vol. 67, No. 2 (Mar., 1958), pp. 282-312 (\href{http://www.jstor.org/stable/1970006?seq=8}{jstor}) \end{itemize} [[!redirects simplicial homotopy groups]] \end{document}