\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial local system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_graded_objects}{}\paragraph*{{Differential Graded Objects}}\label{differential_graded_objects} [[!include differential graded objects - contents]] \hypertarget{simplicial_local_system}{}\section*{{Simplicial local system}}\label{simplicial_local_system} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{simplicial local system} on a [[simplicial set]] $X$ with coefficients in a category $C$ (like [[abelian groups]], for example) is a [[functor]] \begin{displaymath} \pi_{\le1}(X)\to C, \end{displaymath} where $\pi_{\le1}(X)$ is (one of the models for) the [[simplicial fundamental groupoid]] of $X$. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item NB. There is an entry at [[local system|local systems]] together with a blog link to David Speyer: \emph{Three ways of looking at a local system} \begin{itemize}% \item \href{http://sbseminar.wordpress.com/2009/04/20/three-ways-of-looking-at-a-local-system-introduction-and-connection-to-cohomology-theories/}{Introduction and connection to cohomology theories} \end{itemize} \end{itemize} Here we will concentrate on the combinatorial and simplicial version of local systems. \hypertarget{local_systems_in_a_simplicial_context}{}\subsection*{{Local Systems in a simplicial context}}\label{local_systems_in_a_simplicial_context} By the category of \textbf{$n$-graded spaces}, we mean the category whose objects are the $n$-graded vector spaces \begin{displaymath} V = \sum_{p_1,\ldots,p_n\geq0}V^{p_1,\ldots,p_n} \end{displaymath} and whose morphisms are the linear maps, homogeneous of multidegree zero. The category of $n$-graded differential vector spaces has for objects pairs $(V,d)$, where $V$ is an $n$-graded vector space, $d$ is a linear map of \emph{total} degree 1, and $d^2 = 0$. The morphisms are the linear maps, homogeneous of multidegree zero, which commute with $d$. We will denote by $\mathcal{C}$ one of the following categories: \begin{itemize}% \item $n$-graded vector spaces. \item The category of $n$-graded algebras, \item The subcategory of commutative $n$-graded algebras, \item $n$-graded differential vector spaces, \item The subcategory of $n$-graded differential algebras, \item The subcategory of commutative $n$-graded differential algebras. \end{itemize} [[Urs Schreiber|Urs]]: How does the $n$-grading affect the nature of the following definition? It seems that chain homotopies are not used in the following, just the 1-categorical structure? In the `differential' examples, the differential will usually be denoted $d$. Almost always we will be restricting ourselves to the case $n = 1$. Extensions of any results or definitions to the general case are usually routine. Let $K$ be a simplicial set. A \textbf{local system} $F$ on $K$ with values in $\mathcal{C}$ is: \begin{enumerate}% \item a family of objects $F_\sigma =\sum_{p\geq 0} F^p_\sigma$ in $\mathcal{C}$ indexed by the simplices $\sigma$ of $K$; \item a family of morphisms (called the \emph{face} and \emph{degeneracy} operators) \end{enumerate} \begin{displaymath} d_i :F_\sigma \to F_{d_i\sigma} \quad and\quad s_i : F_\sigma \to F_{s_i\sigma} \end{displaymath} satisfying the simplicial identities. \hypertarget{remarks}{}\subsubsection*{{Remarks}}\label{remarks} \begin{itemize}% \item Here we will often just refer to `local system' rather than the fuller `simplicial local system', if no confusion will be likely to result. \item There is an obvious way of assigning a small category to a simplicial set in which the simplices are the objects and the face and degeneracy maps generate the morphisms: \end{itemize} regarding the [[simplicial set]] as a [[functor]] \begin{displaymath} K : \Delta^{op} \to Set \end{displaymath} on the [[simplex category]], its category of cells is the [[comma category]] \begin{displaymath} (Y, const_K) = \left\{ \itexarray{ Y(\Delta^n) &&\stackrel{}{\to}&& Y(\Delta^{n'}) \\ & {}_c\searrow && \swarrow_{c'} \\ && K } \right\} \end{displaymath} where $Y : \Delta \to [\Delta^{op}, Set]$ is the [[Yoneda embedding]] for which $Y(\Delta^n)$ is the standard simplicial $n$-[[simplex]], so that $c : Y(\Delta^n) \to K$ is an $n$-simplex $c \in K_n$ of the simplicial set $n$. A simplicial local system is then just a functor \begin{displaymath} F : (Y,const_K) \to \mathcal{C} \end{displaymath} from that category to $\mathcal{C}$. [[Urs Schreiber|Urs]]: Here it says ``a local system''. I suppose ``simplicial local system'' is meant? We should have a discussion about how this notion of simplicial local system relates to the functors from fundamental groupoids discussed at [[local system]]. [[Tim Porter|Tim]]: That has been amended! Halperin just calls them `local systems', so in the notes that were the basis for this so did I. I copied and pasted from them, so this slip may occur elsewhere as well. \hypertarget{back_to_discussion}{}\subsubsection*{{Back to discussion}}\label{back_to_discussion} Let $\varphi : L \to K$ be a simplicial map and $F$ a local system over $K$. The \emph{pullback} of $F$ to $L$ (or along $\varphi$) is the local system $\varphi^*F$ over $L$ given by \begin{displaymath} (\varphi^*F)_\sigma = F_{\varphi\sigma} ; \quad d_i = d_i ; \quad s_i = s_i. \end{displaymath} If $\varphi$ is an inclusion of a simplicial subset then we may say that $\varphi^*F$ is the \emph{restriction} of $F$ to $L$. Now let $F$ be a local system on $K$ with values in $\mathcal{C}$. Define a graded space $F(K)$ as follows : an element $\Phi$ of $F^p(K)$ is a function which assigns to each simplex $\sigma$ of $K$ an element $\Phi_\sigma \in F^p_\sigma$ such that for all $\sigma$ \begin{displaymath} \Phi_{d_i\sigma} = d_i(\Phi_\sigma) \quad and \quad \Phi_{s_i\sigma} = s_i(\Phi_\sigma). \end{displaymath} [[Urs Schreiber|Urs]]: Do I understand correctly that when the simplicial local system is expressed as a functor, then $F(K)$ is the space of natural transformations from the simplicial local system constant on the [[generator]] (if any) of $\mathcal{C}$ (for instance the tensor unit if $\mathcal{C}$ is graded vector spaces). For ordinary [[local system]]s this gives the flat sections. [[Tim Porter|Tim]]: I'm not sure. The linear structure is the obvious one, defined `componentwise' and if $\mathcal{C}$ is one of the algebra (resp. differential) variants of the generic receiving category then the multiplication (resp. the differential) is defined componentwise as well. In this way $F(K)$ becomes an object of $\mathcal{C}$, called the \textbf{object of global sections} of $F$. [[Tim Porter|Tim]]: This construction also has (I think) a neat categorical description, that will be worth investigating. It would seem to be the analogue of the Grothendieck construction / homotopy colimit (at least partially) in this context. (enlightenment sought!!!) If $\varphi : L \to K$ is a simplicial map, it determines a morphism $F(\varphi) : (\varphi^*F)(L)\to F(K)$ given by \begin{displaymath} (F(\varphi)\Phi)_\sigma = \Phi_{\varphi\sigma}. \end{displaymath} If $\varphi$ is an inclusion of $L$ into $K$, then we denote $(\varphi^*F)(L)$ simply by $F(L)$ and call the morphism $F(K)\to F(L)$ \emph{restriction}. Now suppose $F$ is a local system over $K$. Assume $M_n \subset K_n$ are subsets ($n \geq 0$) such that $d_i : M_n \to M_{n-1}$ This family $\{M_n\}$ generates a subsimplicial set $L\subset K$ and if $s_i\sigma \in M_{n+1}$ then $\sigma = d_i s_i\sigma \in M_n$. [[Urs Schreiber|Urs]]: So what are simplicial local systems used for? Is there a good motivating example? Relating it to the other definition of [[local system]], maybe? [[Tim Porter|Tim]]: Aha! All will be revealed in the next entry `Differential forms on a simplicial set' \ldots{} when I get to putting it in! There is some more to go here as well, describing special properties, but it was getting late last night. \begin{ulemma} Suppose $\Phi_\sigma \in F^p_\sigma$ ( $\sigma \in M_n$), $n \geq 0$, satisfy $\Phi_{d_i\sigma} = d_i\Phi_\sigma$ and $\Phi_{s_i\sigma} = s_i\Phi_\sigma$ (this is with $s_i\sigma\in M_n$, and $n\geq 0$). Then there is a unique element $\Phi\in F^p(L)$ extending $\Phi_\sigma$. \end{ulemma} The proof is by induction and can be found in Halperin's notes if required. For any simplicial set $K$, any $n$-simplex $\sigma \in K_n$ determines a unique simplicial map, which we will also write as $\sigma$ from $\Delta[n]$ to $K$ that sends the unique non-degenerate $n$-simplex of the standard $n$-simplex $\Delta[n]$ to the element $\sigma$. In particular, if $F$ is a local system over $K$, then we can form $\sigma^*F$ over $\Delta[n]$. We will say that $F$ is \emph{extendable} if for each $\sigma$ the restriction \begin{displaymath} \sigma^*(F)(\Delta[n]) \to \sigma^*(F)(\partial\Delta[n]) \end{displaymath} is surjective, where $\partial\Delta[n]$ is the boundary of the $n$-simplex. \begin{uprop} Suppose $\varphi :L \to K$ is a simplicial map and $F$ is an extendable system over $K$, then $\varphi^*F$ is an extendable local system over $L$. \end{uprop} The proof is easy. \begin{uprop} Suppose that $L\subset K$ is a subsimplicial set and $F$ is an extendable local system over $K$. Then the restriction morphism $F(K)\to F(L)$ is surjective. \end{uprop} The proof is again by induction up the skeleta of $K$ and $L$, for details see Halperin, p.XII 10. If $F$ is an extendable local system over $K$ and $L\subset K$, we denote the kernel of $F(K)\to F(L)$ by $F(K,L)$ and call it the \emph{space of relative global sections}. (A description of $F(K,L)$ is given in detail in Halperin, p.XII-12.) It may be useful to have some more of the terminology of local systems available. A local system $F$ over $K$ is \textbf{constant} if for some $F_0 \in \mathcal{C}$, each $F_\sigma = F_0$ and each $d_i$ and $s_j$ is the identity map on $F_0$. We say $F$ is \textbf{constant by dimension} if for some sequence $F_n\in \mathcal{C}$ ($n \geq 0$), $F_\sigma = F_n$, for $\sigma \in K_n$ and $d_i$, $s_j$ depend only on $\dim \sigma$. A local system $F$ over $K$ is a \textbf{local system of coefficients} if for each $\sigma$ and each $i$, \begin{displaymath} d_i : F_\sigma \to F_{d_i\sigma} \quad and s_i : F_\sigma \to F_{s_i \sigma} \end{displaymath} are isomorphisms. Finally $F$ is a \textbf{local system of differential coefficients} if $\mathcal{C}$ is one of the categories with differentials above, and for each $\sigma$, and $i$ \begin{displaymath} d_i^* : H(F_\sigma) \to H(F_{d_i\sigma}) \quad and s_i^* : H(F_\sigma) \to H(F_{s_i\sigma}) \end{displaymath} are isomorphisms, in other words if the corresponding cohomology is a local system of coefficients. \begin{utheorem} Let $F$ and $G$ be extendable local systems of differential coefficients over $K$. Assume we are given morphisms \begin{displaymath} \varphi_\sigma : F_\sigma \to G_\sigma, \quad \sigma \in K, \end{displaymath} compatible with the face and degeneracy operators. Then a morphism $\varphi : F(K)\to G(K)$ is given by $(\varphi\Phi)\sigma = \varphi_\sigma (\Phi_\sigma)$, and \begin{displaymath} \varphi^* : H(F(K))\to H(G(K)) \end{displaymath} is an isomorphism. \end{utheorem} \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[local system]] \item [[twisted cohomology]] \end{itemize} \hypertarget{references_2}{}\subsection*{{References}}\label{references_2} \begin{itemize}% \item S. Halperin, \emph{Lectures on minimal models}, M\'e{}moires de la S. M. F. 2e s\'e{}rie, tome 9-10 (1983), p. 1-261 (\href{http://eudml.org/doc/94833}{eduml}, \href{http://archive.numdam.org/article/MSMF_1983_2_9-10__1_0.pdf}{pdf}) \end{itemize} \end{document}