\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial localization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \begin{quote}% See also [[derived hom space]] \end{quote} \hypertarget{simplicial_localisation}{}\section*{{Simplicial localisation}}\label{simplicial_localisation} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{standard_simplicial_localization}{``Standard'' simplicial localization}\dotfill \pageref*{standard_simplicial_localization} \linebreak \noindent\hyperlink{hammock_localization}{Hammock localization}\dotfill \pageref*{hammock_localization} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{simplical_localization_gives_all_categories}{Simplical localization gives all $(\infty,1)$-categories}\dotfill \pageref*{simplical_localization_gives_all_categories} \linebreak \noindent\hyperlink{equivalences_between_simplicial_localizations}{Equivalences between simplicial localizations}\dotfill \pageref*{equivalences_between_simplicial_localizations} \linebreak \noindent\hyperlink{simplicial_localization_of_model_categories}{Simplicial localization of model categories}\dotfill \pageref*{simplicial_localization_of_model_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[category with weak equivalences]] or [[homotopical category]] is a [[category]] $C$ equipped with the information that some of its [[morphisms]], specifically, a subcategory $W \supset Core(C)$, are to be regarded as ``weakly invertible''. One way to make this notion precise is through the concept of \textbf{simplicial localization}: The \emph{simplicial localization} $L C$ of a category $C$ is an [[(∞,1)-category]] realized concretely as a [[simplicially enriched category]] which is such that the original category injects into it, $C \hookrightarrow L C$, such that every morphism in $C$ that is labeled as a weak equivalence becomes an actual equivalence in the sense of morphisms in [[(∞,1)-categories]] in $L C$. And $L C$ is in some sense universal with this property. Passing to the [[homotopy category of an (∞,1)-category]] of $L C$ then reproduces the [[homotopy category]] that can also directly be obtained from $C$: \begin{displaymath} Ho_C(a,b) \simeq \Pi_0 (L C(a,b)) \end{displaymath} (where $\Pi_0$ gives the [[simplicial homotopy group|0th simplicial homotopy groupoid]]). If the homotopical structure on $C$ extends to that of a (combinatorial) [[model category]], then there is another procedure to obtain a simplicially enriched category from $C$, the [[presentable (infinity,1)-category|(∞,1)-category presented by a combinatorial model category]]. This $(\infty,1)$-category is equivalent to the one obtained by simplicial localization but typically more explicit and more tractable. See also [[localization of a simplicial model category]]. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} See [[simplicial localization of a homotopical category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{standard_simplicial_localization}{}\subsubsection*{{``Standard'' simplicial localization}}\label{standard_simplicial_localization} Let $U : \mathbf{Cat} \to \mathbf{Grph}$ be the [[forgetful functor]] that sends a (small) category to its underlying \emph{[[reflexive graph|reflexive]]} [[graph]], and let $F : \mathbf{Grph} \to \mathbf{Cat}$ be its [[left adjoint]]. We then get a [[comonad]] $\mathbb{G} = (G, \epsilon, \delta)$ on $\mathbf{Cat}$, and as usual this defines a functor $G_\bullet : \mathbf{Cat} \to [\mathbf{\Delta}^{op}, \mathbf{Cat}]$ from [[Cat]] to [[simplicial objects in Cat]] equipped with a canonical augmentation, where $G_n C = G^{n+1} C$. \begin{defn} \label{}\hypertarget{}{} The \textbf{standard resolution} of a small category $C$ is defined to be the simplicial category $G_\bullet C$. \end{defn} Note that this is also a [[simplicial category]] in the strong sense, i.e. $ob G_\bullet C$ is discrete! Thus we may also regard $G_\bullet C$ as an [[sSet]]-[[simplicially enriched category|category]]. This is a [[resolution]] in the sense that the augmentation $\epsilon : G_\bullet C \to C$ is a [[Dwyer-Kan equivalence]]. (In fact, for objects $X$ and $Y$ in $C$, the morphism $G_\bullet C (X, Y) \to C (X, Y)$ admits an extra degeneracy and hence a contracting homotopy.) \begin{defn} \label{}\hypertarget{}{} The \textbf{standard simplicial localization} of a [[relative category]] $(C, W)$ is the simplicial category $L_\bullet (C, W)$ where $L_n (C, W) = G_n C [{G_n W}^{-1}]$. \end{defn} This appears as (\hyperlink{DwyerKanLocalizations}{DwyerKanLocalizations, def. 4.1}). Again, $L_\bullet C$ is a simplicial category in the strong sense, because $G_\bullet C$ is. \hypertarget{hammock_localization}{}\subsubsection*{{Hammock localization}}\label{hammock_localization} \begin{defn} \label{}\hypertarget{}{} Let $(C,W)$ be a [[category with weak equivalences]]. For $X,Y \in C$ any two objects, write \begin{displaymath} L^H C(X,Y) \in sSet \end{displaymath} for the simplicial set defined as follows. For each natural number $n$ there is a [[category]] defined as follows: \begin{itemize}% \item its [[objects]] are length-$n$ zig-zags of morphisms in $C$ \begin{displaymath} X \stackrel{\simeq}{\leftarrow} K_1 \to K_2 \stackrel{\simeq}{\leftarrow} K_3 \to \cdots \to Y \,, \end{displaymath} where the left-pointing morphisms are to be in $W$; \item its [[morphisms]] are ``natural transformations'' between such objects, fixing the endpoints: \begin{displaymath} \itexarray{ && K_1 &\to& K_2 &\stackrel{\simeq}{\leftarrow}& \cdots \\ & {}^{\mathllap{\simeq}}\swarrow &&&&& && \searrow^{} \\ X && \downarrow^{\simeq}&& \downarrow^{\simeq}& \cdots&& && Y \\ & {}_{\mathllap{\simeq}}\nwarrow &&&&& && \nearrow^{} \\ && L_1 &\to& L_2 &\stackrel{\simeq}{\leftarrow}& \cdots } \; \end{displaymath} \end{itemize} $L^H C(X,Y)$ is obtained by \begin{itemize}% \item taking the [[coproduct]] of the [[nerves]] of these categories over all $n$, and \item quotienting by the [[equivalence relation]] generated by inserting or removing identity morphisms and composing composable morphisms. \end{itemize} For $X,Y,Z$ three objects, there is an evident compositing morphism \begin{displaymath} L^H C(X,Y) \times L^H C(Y,Z) \to L^H C(X,Z) \end{displaymath} given by horizontally concatenating hammock diagrams as above. The [[simplicially enriched category]] $L^H C$ obtained this way is the \textbf{hammock localization} of $(C,W)$. \end{defn} This appears as (\hyperlink{DwyerKanCalculating}{DwyerKanCalculating, def. 2.1}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{prop} \label{}\hypertarget{}{} For $(C,W)$ a [[category with weak equivalences]], write $L^H C \in sSet Cat$ for its hammock localization and $C[W^{-1}] \in Cat$ for its ordinary [[localization]]. Write $Ho(L^H C) \in Cat$ for the category with the same objects as $C$ and morphisms between $X$ and $Y$ being $\pi_0 L^H C(X,Y)$. There is an [[equivalence of categories]] \begin{displaymath} Ho L^H C \simeq C[W^{-1}] \,. \end{displaymath} \end{prop} This appears as (\hyperlink{DwyerKanCalculating}{DwyerKanCalculating, prop. 3.1}). \begin{prop} \label{PrePostCompositionWithWeakEquivalences}\hypertarget{PrePostCompositionWithWeakEquivalences}{} Let $(C,W)$ be a [[category with weak equivalences]], and let \begin{displaymath} (f : X \to Y) \in W \subset Mor(C) \end{displaymath} be a weak equivalence. Then for all objects $U \in C$ we have that the to concatenation operations on hammocks induce [[weak homotopy equivalence]]s \begin{displaymath} f_* : L^H C(U,X) \stackrel{\simeq}{\to} L^H C(U,Y) \end{displaymath} and \begin{displaymath} f^* : L^H C(Y,U) \stackrel{\simeq}{\to} L^H C(X, U) \,. \end{displaymath} \end{prop} This appears as (\hyperlink{DwyerKanCalculating}{DwyerKanCalculating, prop. 3.3}). \hypertarget{simplical_localization_gives_all_categories}{}\subsubsection*{{Simplical localization gives all $(\infty,1)$-categories}}\label{simplical_localization_gives_all_categories} \begin{prop} \label{}\hypertarget{}{} Up to Dwyer-Kan equivalence --the [[weak equivalences]] in the [[model structure on sSet-categories]] -- every [[simplicial category]] is the simplicial localization of a [[category with weak equivalences]]. This is (\hyperlink{DwyerKanEquivalences}{DwyerKan 87, 2.5}). \end{prop} If the [[category with weak equivalences]] in question happens to carry even the structure of a [[model category]] there exist more refined tools for computing the [[SSet]]-[[hom object]] of the simplicial localization. These are described at [[(∞,1)-categorical hom-space]]. \hypertarget{equivalences_between_simplicial_localizations}{}\subsubsection*{{Equivalences between simplicial localizations}}\label{equivalences_between_simplicial_localizations} \begin{prop} \label{SimplicialLocalizationOfNaturalTransformation}\hypertarget{SimplicialLocalizationOfNaturalTransformation}{} Let $(C,W)$ and $(C', W')$ be [[categories with weak equivalences]]. Write $L^H C, L^H C' \in sSet Cat$ for the corresponding [[hammock localizations]]. Then for $F_1, F_2 : C \to C'$ two [[homotopical functors]] (functors respecting the weak equivalences, i.e. $F_i(W) \subset W'$) with \begin{displaymath} \eta : F_1 \Rightarrow F_2 \end{displaymath} a [[natural transformation]] with components in the $W'$, we have that for all objects $X,Y \in C$, there is induced a [[natural transformation|natural]] [[homotopy]] between morphisms of [[simplicial sets]] \begin{displaymath} \itexarray{ && L^H C'(F_1(X), F_1(Y) ) \\ & {}^{\mathllap{L^H F_1}}\nearrow && \searrow^{\mathrlap{\eta(Y)_*}} \\ L^H C(X,Y) && \Downarrow && L^H C'(F_1(X), F_2(Y)) \\ & {}_{\mathllap{L^H F_2}}\searrow && \nearrow_{\mathrlap{\eta(X)^*}} \\ && L^H C' (F_2(X), F_2(Y)) } \,. \end{displaymath} \end{prop} This is (\hyperlink{DwyerKanComputations}{DwyerKanComputations, prop. 3.5}). \begin{cor} \label{}\hypertarget{}{} Let $i : (C_1, W_1) \hookrightarrow (C_2, W_2)$ be a [[full subcategory]] such that \begin{enumerate}% \item $i$ is homotopy-essentially surjective: for every object $c_2 \in C_2$ there is an object $c_1 \in C_1$ and a weak equivalence $c_2 \stackrel{\simeq}{\to} i(c_1)$; \item there is a [[functor]] $Q : (C_2,W_2) \to (C_1, W_1)$ and a [[natural transformation]] \begin{displaymath} i \circ Q \Rightarrow Id_{C_2} \,. \end{displaymath} \end{enumerate} Then we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} L^H C_1 \simeq L^H C_2 \,. \end{displaymath} \end{cor} \begin{proof} We have to check that $i$ is an [[essentially surjective (∞,1)-functor]] and a [[full and faithful (∞,1)-functor]]. The first condition is immediate from the first assumption. The second follows with prop. \ref{SimplicialLocalizationOfNaturalTransformation} (using prop. \ref{PrePostCompositionWithWeakEquivalences}) from the second assumption. \end{proof} \hypertarget{simplicial_localization_of_model_categories}{}\subsubsection*{{Simplicial localization of model categories}}\label{simplicial_localization_of_model_categories} \begin{prop} \label{}\hypertarget{}{} Let $C$ be a [[simplicial model category]]. Write $C^\circ$ for the full $Set$-subcategory on the fibrant and cofibrant objects. Then $C^\circ$ and $L^H C$ are connected by an [[equivalence of (∞,1)-categories]]. \end{prop} This is one of the central statements in (\hyperlink{DwyerKanFunctionComplexes}{DwyerKanFunctionComplexes}). The weak homotopy equivalence between $C^\circ(X,Y)$ and $L^H C(X,Y)$ is in corollary 4.7. The equivalence of $\infty$-categories stated above follows with this and the diagram of morphisms of simplicial categories in prop. 4.8. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localizer]] \item [[localizing subcategory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original articles are \begin{itemize}% \item [[William Dwyer]], [[Daniel Kan]], \emph{Simplicial localizations of categories} , J. Pure Appl. Algebra 17 (1980), 267--284. (\href{http://www.nd.edu/~wgd/Dvi/SimplicialLocalizations.pdf}{pdf}) \item [[William Dwyer]], [[Daniel Kan]], \emph{Calculating simplicial localizations} , J. Pure Appl. Algebra 18 (1980), 17--35. (\href{http://www.nd.edu/~wgd/Dvi/CalculatingSimplicialLocalizations.pdf}{pdf}) \item [[William Dwyer]], [[Daniel Kan]], \emph{Function complexes in homotopical algebra} , Topology 19 (1980), 427--440. \item [[William Dwyer]], [[Daniel Kan]], \emph{Equivalences between homotopy theories of diagrams} , Algebraic topologx and algebraic K-theory, (Princeton, N.J. 1983) , Ann. of Math. Stud. 113, Princeton University Press, Princeton, N.J. 1987 . \item [[William Dwyer]], [[Philip Hirschhorn]], [[Daniel Kan]], [[Jeff Smith]], \emph{[[Homotopy Limit Functors on Model Categories and Homotopical Categories]]} , volume 113 of Mathematical Surveys and Monographs \end{itemize} A survey of the general topic involved here can be found in the following paper: \begin{itemize}% \item [[Tim Porter]], \emph{$S$-Categories, $S$-groupoids, Segal categories and quasicategories} (\href{http://arxiv.org/abs/math/0401274}{arXiv}) \end{itemize} Hammock localization is described in Section 4.1 there. A useful quick collection of facts can be found at the beginning of Section 2 in the following paper: \begin{itemize}% \item [[Clark Barwick]], \emph{On (enriched) Bousfield localization of model categories} (\href{http://arxiv.org/abs/0708.2067}{arXiv}) \end{itemize} [[!redirects simplicial localizations]] [[!redirects simplicial localisation]] [[!redirects simplicial localisations]] [[!redirects Dwyer-Kan localization]] [[!redirects Dwyer-Kan localisation]] [[!redirects Dwyer?Kan localization]] [[!redirects Dwyer?Kan localisation]] [[!redirects Dwyer--Kan localization]] [[!redirects Dwyer--Kan localisation]] [[!redirects Hammock-Localization]] [[!redirects Hammock localization]] [[!redirects Hammock localisation]] [[!redirects hammock localization]] [[!redirects hammock localizations]] [[!redirects hammock localisation]] [[!redirects hammock localisations]] [[!redirects (infinity,1)-categorical localization]] [[!redirects (infinity,1)-categorical localizations]] [[!redirects (∞,1)-categorical localization]] [[!redirects (∞,1)-categorical localizations]] \end{document}