\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{category_of_simplicial_objects}{Category of simplicial objects}\dotfill \pageref*{category_of_simplicial_objects} \linebreak \noindent\hyperlink{simplicial_enrichment}{Simplicial enrichment}\dotfill \pageref*{simplicial_enrichment} \linebreak \noindent\hyperlink{geometric_realization}{Geometric realization}\dotfill \pageref*{geometric_realization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{simplicial object} $X$ in a [[category]] $C$ is an \emph{[[simplicial set]]} [[internalization|internal]] to $C$: a collection $\{X_n\}_{n \in \mathbb{N}}$ of [[objects]] in $C$ that behave as if $X_n$ were an object of $n$-dimensional [[simplices]] [[internalization|internal to]] $C$ equipped with maps between these space that assign faces and degenerate simplices. For instance, and there is a longer list further down this page, a simplicial object in $Grps$ is a collection $\{G_n\}_{n\in \mathbb{N}}$ of groups, together with face and degeneracy \emph{homomorphisms} between them. This is just a [[simplicial group]]. We equally well have other important instances of the same idea, when we replace $Grps$ by other categories, or higher categories. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{simplicial object} in a [[category]] $C$ is a [[functor]] $\Delta^{op} \to C$, where $\Delta$ is the [[simplex category|simplicial indexing category]]. More generally, a simplicial object in an [[(∞,1)-category]] is an [[(∞,1)-functor]] $\Delta^{op} \to C$. A \textbf{[[cosimplicial object]]} in $C$ is similarly a functor out of the [[opposite category]], $\Delta \to C$. Accordingly, simplicial and cosimplicial objects in $C$ themselves form a [[category]] in an obvious way, namely the [[functor category]] $[\Delta^{op},C]$ and $[\Delta,C]$, respectively. \textbf{Remark} A \textbf{simplicial object} $X$ in $C$ is often specified by the objects, $X_n$, which are the images under $X$, of the objects $[n]$ of $\Delta$, together with a description of the face and degeneracy morphisms, $d_i$ and $s_j$, which must satisfy the [[simplicial identities]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item A simplicial object in [[Set]] is a [[simplicial set]]. \item A simplicial object in a category of [[presheaves]] is a [[simplicial presheaf]]. \item A simplicial object in [[Top]] is a [[simplicial topological space]]. \item A simplicial object in [[Diff]] is a [[simplicial manifold]]. \item A simplicial object in the category [[Grp]] of [[groups]] is a [[simplicial group]]. See also [[Dold-Kan correspondence]]. \item A simplicial object in the category of [[topological group]]s is a [[simplicial topological group]]. \item A simplicial object in [[Lie algebra]]s is a [[simplicial Lie algebra]]. \item A simplicial object in [[Ring]] is a [[simplicial ring]]. \item A cosimplicial object in the category of [[rings]] ([[algebras]]) is a [[cosimplicial ring]] ([[cosimplicial algebra]]). \item A simplicial object in a category of simplicial objects is a [[bisimplicial object]]. \item A cosimplicial object in [[sSet]] is a [[cosimplicial simplicial set]] (equivalently a simplicial object in cosimplicial sets). \item The [[bar construction]] produces a simplicial object from a [[monad]] and an algebra over that monad. \end{itemize} \hypertarget{category_of_simplicial_objects}{}\subsection*{{Category of simplicial objects}}\label{category_of_simplicial_objects} For $D$ a [[category]], we write $D^{\Delta^{op}}$ for the [[functor category]] from $\Delta^{op}$ to $D$: its category of simplicial objects. \hypertarget{simplicial_enrichment}{}\subsubsection*{{Simplicial enrichment}}\label{simplicial_enrichment} \begin{defn} \label{SimplicialEnrichment}\hypertarget{SimplicialEnrichment}{} Let $D$ be a [[nLab:category]] with all [[nLab:limit]]s and [[nLab:colimit]]s. This implies that it is [[nLab:copower|tensored]] over [[nLab:Set]] \begin{displaymath} \cdot : D \times Set \to D \,. \end{displaymath} This induces a functor \begin{displaymath} \cdot^{\Delta^{op}} : D^{\Delta^{op}} \times sSet \to D^{\Delta^{op}} \end{displaymath} which we shall also write just ``$\cdot$''. For $X,Y \in D^{\Delta^{op}}$ write \begin{displaymath} D^{\Delta^{op}}(X,Y) := Hom_{D^{\Delta^{op}}}(X \cdot \Delta[\bullet], Y) \in sSet \end{displaymath} and for $X,Y,Z \in D^{\Delta^{op}}$ let \begin{displaymath} D^{\Delta^{op}}(X,Y) \times D^{\Delta^{op}}(Y,Z) \to D^{\Delta^{op}}(X,Z) \end{displaymath} be given in degree $n$ by \begin{displaymath} (X \cdot \Delta[n] \to Y, Y \cdot \Delta[n] \to Z) \mapsto ( X \cdot \Delta[n] \to X \cdot \Delta[n]\times \Delta[n] \to Y \cdot \Delta[n] \to Z) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} With the above definitions $D^{\Delta^{op}}$ becomes an [[nLab:sSet]]-[[nLab:enriched category]] which is both [[nLab:copower|tensored]] as well as [[nLab:power|cotensored]] over $sSet$. \end{prop} \begin{defn} \label{}\hypertarget{}{} We may regard the category of cosimplicial objects $D^{\Delta}$ as an $sSet$-enriched category using the above enrichment by identifying \begin{displaymath} D^{\Delta} \simeq ({D^{op}}^{\Delta^{op}})^{op} \,. \end{displaymath} \end{defn} \hypertarget{geometric_realization}{}\subsubsection*{{Geometric realization}}\label{geometric_realization} If $D$ is already a [[simplicially enriched category]] in its own right, with [[powers]] and [[copowers]], we can define the [[geometric realization]] of a simplicial object $X\in D^{\Delta^{op}}$ as a [[coend]]: \begin{displaymath} |X| = \int^{[n]\in\Delta} \Delta[n] \odot X_n \end{displaymath} where $\odot$ denotes the [[copower]] for the simplicial enrichment of $D$. This is [[left adjoint]] to the ``total singular object'' functor $D \to D^{\Delta^{op}}$ sending $Y$ to the simplicial object $n\mapsto Y^{\Delta[n]}$, the [[power]] for the simplicial enrichment. Perhaps surprisingly, this adjunction is even a \emph{simplicially enriched} adjunction when $D^{\Delta^{op}}$ has its simplicial structure from Definition \ref{SimplicialEnrichment}, even though the latter makes no reference to the given simplicial enrichment of $D$. A proof can be found in \hyperlink{RSS01}{RSS01, Proposition 5.4}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplex]], [[simplex category]] \item \textbf{simplicial object} \begin{itemize}% \item [[simplicial set]] \item [[simplicial diagram]] \item [[simplicial object in an (∞,1)-category]] \end{itemize} \item [[semi-simplicial object]] \begin{itemize}% \item [[semisimplicial set]] \end{itemize} \item [[globular set]], [[cubical set]] \item [[nerve]], [[nerve and realization]] \item [[Segal condition]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter May]], \emph{Simplicial objects in algebraic topology} , University of Chicago Press, 1967, (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}) \item [[Charles Rezk]], [[Stefan Schwede]], and [[Brooke Shipley]], \emph{Simplicial structures on model categories and functors}, \href{https://arxiv.org/abs/math/0101162}{arxiv} \end{itemize} [[!redirects simplicial objects]] [[!redirects category of simplicial objects]] [[!redirects categories of simplicial objects]] category: simplicial object \end{document}