\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial object in an (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Powering}{Powering over simplicial sets}\dotfill \pageref*{Powering} \linebreak \noindent\hyperlink{cohesion}{Cohesion}\dotfill \pageref*{cohesion} \linebreak \noindent\hyperlink{internal_language}{Internal language}\dotfill \pageref*{internal_language} \linebreak \noindent\hyperlink{geometric_realization_and_filtering}{Geometric realization and filtering}\dotfill \pageref*{geometric_realization_and_filtering} \linebreak \noindent\hyperlink{doldkan_correspondence}{$\infty$-Dold-Kan correspondence}\dotfill \pageref*{doldkan_correspondence} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{internal_category_objects}{Internal category objects}\dotfill \pageref*{internal_category_objects} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{C}$ an [[(∞,1)-category]], a [[simplicial object]] in $\mathcal{C}$ is an [[(∞,1)-functor]] \begin{displaymath} X \colon \Delta^{op} \to \mathcal{C} \end{displaymath} from the [[opposite category]] of the [[simplex category]] into $\mathcal{C}$. The $(\infty,1)$-category of simplicial objects in $\mathcal{C}$ and morphisms between them is the [[(∞,1)-category of (∞,1)-functors]] \begin{displaymath} \mathcal{C}^{\Delta^{op}} = Func_\infty(\Delta^{op}, \mathcal{C}) \,. \end{displaymath} \end{defn} For instance (\hyperlink{Lurie}{Lurie, def. 6.1.2.2}). \begin{remark} \label{}\hypertarget{}{} For $\mathcal{C}$ a [[1-category]] a simplicial object in $\mathcal{C}$ is a [[simplicial object]] in the traditional sense of [[category theory]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} A \emph{cosimplicial object} in $\mathcal{C}$ is a simplicial object in the [[opposite category]] $\mathcal{C}^{op}$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Powering}{}\subsubsection*{{Powering over simplicial sets}}\label{Powering} Assume that $\mathcal{C}$ has all [[(∞,1)-limits]]. The following is a model for the [[powering]] of simplicial objects in $\mathcal{C}$ by simplicial sets. \begin{defn} \label{PoweringByLimitOverCategoryOfSimplices}\hypertarget{PoweringByLimitOverCategoryOfSimplices}{} Let $\mathcal{C} \in QCat \hookrightarrow sSet$ be an [[(∞,1)-category]] incarnated as a [[quasi-category]], and let $X \colon \Delta^{op} \to \mathcal{C}$ be a simplicial object. Then for $K \in sSet$ any [[simplicial set]], write \begin{displaymath} X[K] \colon \Delta_{/K}^{op} \to \Delta^{op} \stackrel{X}{\to} \mathcal{C} \end{displaymath} for the the composite [[(∞,1)-functor]] of $X_\bullet$ with the projection from (the [[opposite category]] of) the [[category of simplices]] of $K$, and write \begin{displaymath} X(K) \colon \underset{\leftarrow}{\lim} \left( \Delta_{/K}^{op} \to \Delta^{op} \stackrel{X}{\to} \mathcal{C} \right) \end{displaymath} for the [[(∞,1)-limit]] over it (if it exists). \end{defn} This is discussed in (\hyperlink{Lurie}{Lurie HTT 4.2.3, notation 6.1.2.5}). See also around (\hyperlink{LurieGood}{Lurie 2, notation 1.1.7}). \begin{remark} \label{}\hypertarget{}{} The inclusion $\Delta_{/K}^{nd} \hookrightarrow \Delta_{K}$ of the [[full subcategory]] on non-degenerate simplicies is a [[homotopy cofinal functor]] (as discussed there). Therefore the $(\infty,1)$-limit in def. \ref{PoweringByLimitOverCategoryOfSimplices} may equivalently be taken over this category of non-degenerate simplices. \end{remark} \begin{example} \label{}\hypertarget{}{} For $K = \Delta^1 \coprod_{\Delta^0} \Delta^1$ the simplicial set consisting of two consecutive edges, we have for $X_\bullet \in \mathcal{C}^{\Delta^\bullet}$ that \begin{displaymath} X(K) \simeq X_1 \underset{X_0}{\times} X_1 \end{displaymath} is the [[homotopy fiber product]] in \begin{displaymath} \itexarray{ && X(K) \\ & \swarrow && \searrow \\ X_1 &&&& X_1 \\ & {}_{\mathllap{\partial_1}}\searrow && \swarrow_{\mathrlap{\partial_0}} \\ && X_0 } \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} For $K = \Delta^n$ itself an $n$-[[simplex]], for some $n \in \mathbb{N}$ the powering reduces to evaluation on that simplex: \begin{displaymath} X(\Delta^n) \simeq X_n \,. \end{displaymath} This is because the [[category of non-degenerate simplices]] of an $n$-simplex has a [[terminal object]] (namely that $n$-simplex itself), and so its [[opposite category]] has an [[initial object]] and the $(\infty,1)$-limit over a [[diagram]] with initial object is given by evaluation at that initial object. \end{example} \begin{remark} \label{EquivalenceOfConeCategoriesAndLimits}\hypertarget{EquivalenceOfConeCategoriesAndLimits}{} For $X_\bullet \in \mathcal{C}^{\Delta^{op}}$ and $K \to K'$ the following are equivalent \begin{enumerate}% \item the induced morphism of cone $(\infty,1)$-categoris $\mathcal{C}_{X[K]} \to \mathcal{C}_{X[K']}$ is an [[equivalence of (∞,1)-categories]]; \item the induced morphism of [[(∞,1)-limits]] $X(K) \to X(K')$ is an [[equivalence in an (∞,1)-category|equivalence]]. \end{enumerate} \end{remark} (The first perspective is used in (\hyperlink{Lurie}{Lurie}), the second in (\hyperlink{Lurie2}{Lurie2}).) \begin{proof} In one direction: the limit is the [[terminal object in an (∞,1)-category|terminal object]] in the cone category, and so is preserved by equivalences of cone categories. (This direction appears as (\hyperlink{Lurie}{Lurie, prop. 4.1.1.8})). Conversely, the limits is the object representing cones, and hence an equivalence of limits induces an equivalence of cone categories. \end{proof} \begin{prop} \label{SlicingOverPoweringOfSimplicialObjects}\hypertarget{SlicingOverPoweringOfSimplicialObjects}{} Let $X \colon \Delta^{op} \to \mathcal{C}$ be a simplicial object which is a [[groupoid object in an (∞,1)-category]]. If $K \to K'$ is a morphism in [[sSet]] which is a [[weak homotopy equivalence]] and a [[bijection]] on [[vertices]], then the induced morphism on [[slice-(∞,1)-categories]] \begin{displaymath} \mathcal{C}_{/X[K]} \to \mathcal{C}_{/X[K']} \end{displaymath} is an [[equivalence of (∞,1)-categories]] (a [[weak equivalence]] in the [[model structure for quasi-categories]]). Equivalently, by remark \ref{SlicingOverPoweringOfSimplicialObjects}, we have an equivalence \begin{displaymath} X(K) \to X(K') \,. \end{displaymath} \end{prop} This is (\hyperlink{Lurie}{Lurie, prop. 6.1.2.6}). \hypertarget{cohesion}{}\subsubsection*{{Cohesion}}\label{cohesion} If $\mathcal{C} = \mathbf{H}$ is an [[(∞,1)-topos]] then $\mathcal{C}^{\Delta^{op}}$ is a [[cohesive (∞,1)-topos]] over $\mathbf{H}$. For more see at \emph{\href{cohesive+%28infinity%2C1%29-topos#SimplicialObjctsInACohesiveTopos}{cohesive (∞,1)-topos - Examples - Simplicial objects}}. \hypertarget{internal_language}{}\subsubsection*{{Internal language}}\label{internal_language} If $\mathcal{C}$ is a [[locally cartesian closed (∞,1)-category]] whose [[internal language]] is [[homotopy type theory]], then the internal language of $\mathcal{C}^{\Delta^{op}}$ is that homotopy type theory equipped with the axioms for a [[linear interval]] object. (\ldots{}) \hypertarget{geometric_realization_and_filtering}{}\subsubsection*{{Geometric realization and filtering}}\label{geometric_realization_and_filtering} The \emph{[[geometric realization]]} ${\vert X_\bullet \vert}$ of a simplicial object $X_\bullet$ is, if it exists, the [[(∞,1)-colimit]] over the corresponding [[(∞,1)-functor]] $X_\bullet \;\colon\; \Delta^{op} \to \mathcal{C}$. \begin{displaymath} {\vert X_\bullet \vert} \coloneqq \underset{\longrightarrow}{\lim}_n X_n \,. \end{displaymath} Hence the geometric realization of a cosimplicial object $\Delta^{op} \to \mathcal{C}^{op}$ -- called its [[totalization]] -- is the [[(∞,1)-limit]] over $\Delta \to \mathcal{C}$. The [[geometric realization]] of the [[simplicial skeleta]] of $X_\bullet$ \begin{displaymath} {\vert sk_0 X_\bullet \vert} \to {\vert sk_1 X_\bullet \vert} \to {\vert sk_2 X_\bullet \vert} \to \cdots \,. \end{displaymath} constitutes a [[filtered object in an (infinity,1)-category|filtering]] on the [[geometric realization]] of $X_\bullet$ itself \begin{displaymath} {\vert X_\bullet \vert} \simeq \underset{\longrightarrow}{\lim}_n {\vert sk_n X_\bullet \vert} \,. \end{displaymath} If $\mathcal{C}$ is a [[stable (∞,1)-category]], then the the corresponding [[spectral sequence of a filtered stable homotopy type]] is the [[spectral sequence of a simplicial stable homotopy type]]. \hypertarget{doldkan_correspondence}{}\subsubsection*{{$\infty$-Dold-Kan correspondence}}\label{doldkan_correspondence} The following statement is the \emph{[[infinity-Dold-Kan correspondence]]}. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[stable (∞,1)-category]]. Then the [[(∞,1)-categories]] of non-negatively graded [[sequential diagram|sequences]] in $C$ is [[equivalence of (∞,1)-categories|equivalent]] to the [[(∞,1)-category]] of [[simplicial objects in an (∞,1)-category]] in $\mathcal{C}$ \begin{displaymath} Fun(N(\mathbb{Z}_{\geq 0}), C) \simeq Fun(N(\Delta)^{op}, C) \,. \end{displaymath} Under this equivalence, a [[simplicial object]] $X_\bullet$ is sent to the [[sequential diagram|sequence]] of [[geometric realizations]] ([[(∞,1)-colimits]]) of its [[simplicial skeleta]] \begin{displaymath} {\vert sk_0 X_\bullet \vert} \to {\vert sk_1 X_\bullet \vert} \to {\vert sk_2 X_\bullet \vert} \to \cdots \,. \end{displaymath} This constitutes a [[filtered object in an (infinity,1)-category|filtering]] on the [[geometric realization]] of $X_\bullet$ itself \begin{displaymath} {\vert X_\bullet \vert} \simeq \underset{\longrightarrow}{\lim}_n {\vert sk_n X_\bullet \vert} \,. \end{displaymath} \end{prop} ([[Higher Algebra|Higher Algebra, theorem 1.2.4.1]]) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{internal_category_objects}{}\subsubsection*{{Internal category objects}}\label{internal_category_objects} \begin{itemize}% \item A [[pre-category object in an (∞,1)-category]] $\mathcal{C}$ is a simplicial object which satisfies the [[Segal conditions]]; \item a [[category object in an (∞,1)-category]] is a pre-category object which also satisfies the [[univalence axiom]]; \item a [[groupoid object in an (∞,1)-category]] is a category object all of whose [[morphisms]] are [[equivalences]] under composition. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial object]] \begin{itemize}% \item [[simplicial set]] \end{itemize} \item [[semi-simplicial object]] \begin{itemize}% \item [[semisimplicial set]] \end{itemize} \item [[simplicial homotopy theory]] \end{itemize} \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} Simplicial objects in general [[(∞,1)-categories]] are discussed in \begin{itemize}% \item [[Jacob Lurie]], section 6.1.2 of \emph{[[Higher Topos Theory]]} \end{itemize} Related discussion is also in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[(∞,2)-Categories and the Goodwillie Calculus]]} (\href{http://arxiv.org/abs/0905.0462}{arXiv:0905.0462}) \end{itemize} Simplicial obects in [[stable (∞,1)-categories]] are discussed in \begin{itemize}% \item [[Jacob Lurie]], section 1.2.4 of \emph{[[Higher Algebra]]} \end{itemize} [[!redirects simplicial objects in an (∞,1)-category]] [[!redirects simplicial objects in an (infinity,1)-category]] [[!redirects simplicial object in an (∞,1)-category]] [[!redirects cosimplicial object in an (∞,1)-category]] [[!redirects cosimplicial objects in an (∞,1)-category]] [[!redirects cosimplicial object in an (infinity,1)-category]] [[!redirects cosimplicial objects in an (infinity,1)-category]] \end{document}