\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial presheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{interpretation_as_stacks}{Interpretation as $\infty$-stacks}\dotfill \pageref*{interpretation_as_stacks} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \emph{Simplicial presheaves} over some [[site]] $S$ are \begin{itemize}% \item [[presheaf|Presheaves]] with values in the category [[SimpSet]] of simplicial sets, i.e., functors $S^{op} \to \Simp\Set$, i.e., functors $S^{op} \to [\Delta^{op}, \Set]$; \end{itemize} or equivalently, using the Hom-[[adjoint functor|adjunction]] and symmetry of the [[closed monoidal category|closed monoidal structure]] on [[Cat]] \begin{itemize}% \item simplicial objects in the category of presheaves, i.e. functors $\Delta^{op} \to [S^{op},\Set]$. \end{itemize} \hypertarget{interpretation_as_stacks}{}\subsection*{{Interpretation as $\infty$-stacks}}\label{interpretation_as_stacks} Regarding $\Simp\Set$ as a [[model category]] using the standard [[model structure on simplicial sets]] and inducing from that a model structure on $[S^{op}, \Simp\Set]$ makes simplicial presheaves a model for $\infty$-[[infinity-stack|stacks]], as described at [[infinity-stack homotopically]]. In more illustrative language this means that a simplicial presheaf on $S$ can be regarded as an $\infty$-[[infinity-groupoid|groupoid]] (in particular a [[Kan complex]]) whose space of $n$-morphisms is modeled on the objects of $S$ in the sense described at [[space and quantity]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Notice that most definitions of $\infty$-[[infinity-category|category]] the $\infty$-category is itself defined to be a [[simplicial set]] with extra structure (in a [[geometric definition of higher category]]) or gives rise to a simplicial set under taking its [[nerve]] (in an [[algebraic definition of higher category]]). So most notions of presheaves of higher categories will naturally induce presheaves of simplicial sets. \item In particular, regarding a [[group]] $G$ as a one object category $\mathbf{B}G$ and then taking the nerve $N(\mathbf{B}G) \in \Simp\Set$ of these (the ``classifying simplicial set of the group whose [[geometric realization]] is the [[classifying space]] $\mathcal{B}G$), which is clearly a functorial operation, turns any presheaf with values in groups into a simplicial presheaf. \end{itemize} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item There are various useful [[model category]] structures on the category of simplicial presheaves. See [[model structure on simplicial presheaves]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Here are some basic but useful facts about simplicial presheaves. \begin{uprop} Every simplicial presheaf $X$ is a [[homotopy limit|homotopy colimit]] over a [[diagram]] of [[Set]]-valued sheaves regarded as discrete simplicial sheaves. More precisely, for $X : S^{op} \to SSet$ a simplicial presheaf, let $D_X : \Delta^{op} \to Set \hookrightarrow SSet$ be given by $D_X : [n] \mapsto X_n$. Then there is a weak equivalence \begin{displaymath} hocolim_{[n] \in \Delta} D_X([n]) \stackrel{\simeq}{\to} X \,. \end{displaymath} \end{uprop} \begin{proof} See for instance \href{http://www.math.uiuc.edu/K-theory/0563/spre.pdf#page=6}{remark 2.1, p. 6} \begin{itemize}% \item Daniel Dugger, Sharon Hollander, Daniel C. Isaksen, \emph{Hypercovers and simplicial presheaves} (\href{http://www.math.uiuc.edu/K-theory/0563/}{web}) \end{itemize} (which is otherwise about [[descent for simplicial presheaves]]). \end{proof} \begin{ucor} Let $[-,-] : SSet^{S^{op}} \to SSet$ be the canonical $SSet$-enrichment of the category of simplicial presheaves (i.e. the assignment of [[SSet]]-[[enriched functor category|enriched functor categories]]). It follows in particular from the above that every such [[hom-object]] $[X,A]$ of simplical presheaves can be written as a [[homotopy limit]] (in [[SSet]] for instance realized as a [[weighted limit]], as described there) over evaluations of $X$. \end{ucor} \begin{proof} First the above yields \begin{displaymath} \begin{aligned} [X, A ] & \simeq [ hocolim_{[n] \in \Delta} X_n , A ] \\ & holim_{[n] \in \Delta} [X_n, A] \end{aligned} \,. \end{displaymath} Next from the [[co-Yoneda lemma]] we know that the [[Set]]-valued presheaves $X_n$ are in turn colimits over representables in $S$, so that \begin{displaymath} \begin{aligned} \cdots & \simeq holim_{[n] \in \Delta} [ colim_i U_{i}, A] \\ & \simeq holim_{[n] \in \Delta} lim_i [ U_{i}, A] \end{aligned} \,. \end{displaymath} And finally the [[Yoneda lemma]] reduces this to \begin{displaymath} \begin{aligned} \cdots & holim_{[n] \in \Delta} lim_i A(U_i) \end{aligned} \,. \end{displaymath} \end{proof} Notice that these kinds of computations are in particular often used when checking/computing [[descent|descent and codescent]] along a [[cover]] or [[hypercover]]. For more on that in the context of simplicial presheaves see [[descent for simplicial presheaves]]. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[model structure on simplicial presheaves]] \item [[descent for simplicial presheaves]] \item [[presheaf of spectra]] \end{itemize} Applications appear for instance at \begin{itemize}% \item [[geometric infinity-function theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The theory of simplicial presheaves and of simplicial sheaves was developed by J. Jardine in a long series of articles, some of which are listed below. It's usage as a model for [[infinity-stack]]s was developed by T\"o{}en as described at [[infinity-stack homotopically]]. \begin{itemize}% \item \textbf{JardStackSSh} -- J. Jardine, \emph{Stacks and the homotopy theory of simplicial sheaves}, Homology, homotopy and applications, vol. 3(2), 2001 p. 361-284 (\href{http://intlpress.com/HHA/v3/n2/a5/v3n2a5.pdf}{pdf}) \item \textbf{JardSimpSh} -- J. Jardine, \emph{Fields Lectures: Simplicial presheaves} (\href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf}{pdf}) \end{itemize} For their interpretation in the more general context of [[(infinity,1)-category of (infinity,1)-sheaves|(infinity,1)-sheaves]] see \href{}{section 6.5.2} of \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]] . \end{itemize} [[!redirects simplicial presheaves]] [[!redirects category of simplicial presheaves]] [[!redirects categories of simplicial presheaves]] \end{document}