\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial principal bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{twisted_cartesian_products}{Twisted cartesian products}\dotfill \pageref*{twisted_cartesian_products} \linebreak \noindent\hyperlink{UniversalSimplicialBundle}{The universal simplicial $G$-principal bundle}\dotfill \pageref*{UniversalSimplicialBundle} \linebreak \noindent\hyperlink{definition_4}{Definition}\dotfill \pageref*{definition_4} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[simplicial group|Simplicial groups]] model all [[∞-group]]s in [[∞Grpd]]. Accordingly [[principal ∞-bundle]]s in [[∞Grpd]] (a [[discrete ∞-groupoid|discrete]] $\infty$-bundle) should be modeled by [[Kan complex]]es $E \to X$ equipped with a principal [[action]] by a [[simplicial group]]. It is suficient to assume the action to be strict. This yields the notion of \emph{simplicial principal bundles} . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} \textbf{(principal action)} Let $G$ be a simplicial group. For $P$ a [[Kan complex]], an [[action]] of $G$ on $E$ \begin{displaymath} \rho : E \times G \to E \end{displaymath} is called \textbf{principal} if it is degreewise principal, i.e. if for all $n \in \mathbb{N}$ the only elements $g \in G_n$ that have any fixed point $e \in E_n$ in that $\rho(e,g) = e$ are the neutral elements. \end{defn} \begin{example} \label{}\hypertarget{}{} The canonical action \begin{displaymath} G \times G \to G \end{displaymath} of any simplicial group on itself is principal. \end{example} \begin{defn} \label{}\hypertarget{}{} \textbf{(simplicial principal bundle)} For $G$ a simplicial group, a morphism $P \to X$ of [[Kan complex]]es equipped with a $G$-[[action]] on $P$ is called a $G$-\textbf{simplicial principal bundle} if \begin{itemize}% \item the action is principal; \item the base is isomorphic to the quotient $E/G := \lim_{\to}(E \times G \stackrel{\overset{\rho}{\to}}{\underset{p_1}{\to} E})$ by the action: \begin{displaymath} E/G \simeq X \,. \end{displaymath} \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} A simplicial $G$-principal bundle $P \to X$ is necessarly a [[Kan fibration]]. \end{prop} \begin{proof} This appears as (\hyperlink{May}{May, Lemma 18.2}). \end{proof} \hypertarget{twisted_cartesian_products}{}\subsubsection*{{Twisted cartesian products}}\label{twisted_cartesian_products} \begin{prop} \label{}\hypertarget{}{} Let $E \to B$ be a [[twisted cartesian product]] of the [[simplicial set]] $B$ with a [[simplicial group]] $G$. Then with respect to the canonical $G$-[[action]] this is a simplicial principal bundle. \end{prop} This is (\hyperlink{May}{May, prop. 18.4}). \begin{remark} \label{}\hypertarget{}{} It is simplicial principal bundles of this form that one is mainly interested in. These are the objects that are classified by the evident [[classifying space]] $\bar W G$. This is discussed \href{UniversalSimplicialBundle}{below}. \end{remark} \hypertarget{UniversalSimplicialBundle}{}\subsection*{{The universal simplicial $G$-principal bundle}}\label{UniversalSimplicialBundle} Recall from [[generalized universal bundle]] that a universal $G$-principal simplicial bundle should be a principal bundle $\mathbf{E}G \to \mathbf{B}G$ such that every other $G$-principal simplicial bundle $P \to X$ arises up to equivalence as the [[pullback]] of $\mathbf{E}G$ along a morphism $X \to \mathbf{B}G$. A standard model for the [[delooping]] [[Kan complex]] $\mathbf{B}G$ for $G$ a simplicial group goes by the name \begin{displaymath} \bar W G \,. \end{displaymath} This is described at . The following establishes a model for the universal simplicial bundle over this model of $\mathbf{B}G$. \hypertarget{definition_4}{}\subsubsection*{{Definition}}\label{definition_4} \begin{defn} \label{}\hypertarget{}{} For $G$ a simplicial group, define the [[simplicial set]] $W G$ to be the [[decalage]] of $\overline{W}G$ \begin{displaymath} W G := Dec \overline{W}G \,. \end{displaymath} \end{defn} By the discussion at [[homotopy pullback]] this means that for $X_\bullet$ any [[Kan complex]], an ordinary [[pullback]] diagram \begin{displaymath} \itexarray{ P_\bullet &\to& W G \\ \downarrow && \downarrow \\ X_\bullet &\stackrel{g}{\to}& \overline{W}G } \end{displaymath} in [[sSet]] exhibits $P_\bullet$ as the [[homotopy pullback]] in $sSet_{Quillen}$ / [[(∞,1)-pullback]] in [[∞Grpd]] \begin{displaymath} \itexarray{ P_\bullet &\to& * \\ \downarrow &\swArrow& \downarrow \\ X_\bullet &\stackrel{g}{\to}& \overline{W}G } \,, \end{displaymath} i.e. as the [[homotopy fiber]] of the cocycle $g$. \begin{defn} \label{}\hypertarget{}{} We call $P_\bullet := X_\bullet \times^g W G$ the simplicial $G$-[[principal bundle]] corresponding to $g$. \end{defn} \hypertarget{properties_2}{}\subsubsection*{{Properties}}\label{properties_2} \begin{prop} \label{}\hypertarget{}{} Let $\{\phi : X_n \to G_{(n-1)}\}$ be the [[twisting function]] corresponding to $g : X_\bullet \to \overline{W}G$ by the above discussion. Then the simplicial set $P_\bullet := X_\bullet \times_{g} W G$ is explicitly given by the formula called the [[twisted Cartesian product]] $X_\bullet \times^\phi G_\bullet$: its cells are \begin{displaymath} P_n = X_n \times G_n \end{displaymath} with face and degeneracy maps \begin{itemize}% \item $d_i (x,g) = (d_i x , d_i g)$ if $i \gt 0$ \item $d_0 (x,g) = (d_0 x, \phi(x) d_0 g)$ \item $s_i (x,g) = (s_i x, s_i g)$. \end{itemize} \end{prop} \hypertarget{references}{}\subsection*{{References}}\label{references} Here are some pointers on where precisely in the literature the above statements can be found. One useful reference is \begin{itemize}% \item [[Peter May]], \emph{Simplicial Objects in Algebraic Topology} (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}). \end{itemize} There the abbreviation PCTP ( \emph{principal twisted cartesian product} ) is used for what above we called just [[twisted Cartesian product]]s. The fact that every PTCP $X \times_\phi G \to X$ defined by a [[twisting function]] $\phi$ arises as the pullback of $W G \to \overline{W}G$ along a morphism of simplicial sets $X \to \overline{W}G$ can be found there by combining \begin{enumerate}% \item the last sentence on p. 81 which asserts that pullbacks of PTCPs $X \times_\phi G \to X$ along morphisms of simplicial sets $f : Y \to X$ yield PTCPs corresponding to the composite of $f$ with $\phi$; \item section 21 which establishes that $W G \to \bar W G$ is the PTCP for some universal twisting function $r(G)$. \item lemma 21.9 states in the language of composites of twisting functions that every PTCP comes from composing a cocycle $Y \to \bar W G$ with the universal twisting function $r(G)$. In view of the relation to pullbacks in item 1, this yields the statement in the form we stated it above. \end{enumerate} An explicit version of the statement that [[twisted Cartesian product]]s are nothing but pullbacks of a [[generalized universal bundle]] is on \href{http://ncatlab.org/timporter/files/menagerie10.pdf#page=148}{page 148} of \begin{itemize}% \item [[Tim Porter]], \emph{\href{http://ncatlab.org/timporter/show/crossed+menagerie}{Crossed Menagerie}} \end{itemize} On \href{http://ncatlab.org/timporter/files/menagerie10.pdf#page=239}{page 239} there it is mentioned that \begin{displaymath} G \to W G \to \overline{W}G \end{displaymath} is a model for the [[loop space object]] [[fiber sequence]] \begin{displaymath} G \to * \to \mathbf{B}G \,. \end{displaymath} One place in the literature where the observation that $W G$ is the [[decalage]] of $\overline{W}G$ is mentioned fairly explicitly is page 85 of \begin{itemize}% \item [[John Duskin]], \emph{Simplicial methods and the interpretation of ``triple'' cohomology}, number 163 in Mem. Amer. Math. Soc., 3, Amer. Math. Soc. (1975) \end{itemize} Discussion of \emph{topological} simplicial principal bundles is in \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundle in parameterized spaces} (\href{http://arxiv.org/abs/1203.2460}{arXiv:1203.2460}) \end{itemize} \begin{itemize}% \item [[Danny Stevenson]], \emph{Classifying theory for simplicial parametrized groups} (\href{http://arxiv.org/abs/1203.2461}{arXiv:1203.2461}) \end{itemize} [[!redirects simplicial principal bundles]] [[!redirects principal simplicial bundle]] [[!redirects principal simplicial bundles]] [[!redirects universal simplicial principal bundle]] [[!redirects universal simplicial principal bundles]] \end{document}