\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{connected_components}{Connected components}\dotfill \pageref*{connected_components} \linebreak \noindent\hyperlink{higher_homotopy_groups}{Higher homotopy groups}\dotfill \pageref*{higher_homotopy_groups} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{simplicial_fields}{Simplicial fields}\dotfill \pageref*{simplicial_fields} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{simplicial ring} is a [[simplicial object]] in the [[category]] [[Ring]] of [[rings]]. This may be understood conceptually as follows: \begin{itemize}% \item as ordinary rings are algebras over the ordinary [[algebraic theory]] $T$ of rings, if we regard this as an [[(∞,1)-algebraic theory]] then simplicial rings model the $(\infty,1)$-algebras over that; \item the category [[Ring]]${}^{op}$ is naturally equipped with the structure of a [[geometry (for structured (infinity,1)-toposes)|pregeometry]]. The corresponding [[geometry (for structured (∞,1)-toposes)]] is $sRing^{op}$, the opposite of the category of simplicial rings. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{simplicial ring} is a [[simplicial object]] in the [[category]] [[Ring]] of [[rings]]. There is an evident notion of [[(∞,1)-category]] of [[module]]s over a simplicial ring. The corresponding [[bifibration]] $sMod \to sRing$ of modules over simplicial ring is equivalently to the [[tangent (∞,1)-category]] of the [[(∞,1)-category]] of simplicial rings. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{connected_components}{}\subsubsection*{{Connected components}}\label{connected_components} Given a simplicial ring $A = A_{\bullet}$, its [[connected components]] (the 0th ``[[homotopy group]]'')) is an ordinary [[ring]] \begin{displaymath} \pi_0(A) \in Ring \,. \end{displaymath} Forming connected components is a [[functor]] from simplicial rings to plain rings, which is [[left adjoint]] to the inclusion of ordinary rings as simplicially constant simplicial rings, exhibiting a [[reflective subcategory]] inclusion \begin{displaymath} Ring \stackrel{\stackrel{\pi_0}{\longleftarrow}}{\hookrightarrow} Ring^{\Delta^{op}} \,. \end{displaymath} (\href{Toen14}{To\"e{}n 14, section 2.2}) So on [[formal duals]] of [[commutative ring|commutative]] (simplicial) rings this is a [[coreflection]] of [[affine schemes]] in affine [[derived schemes]] \begin{displaymath} CRing^{op} \stackrel{\hookrightarrow}{\longleftarrow} (CRing^{\Delta^{op}})^{op} \,. \end{displaymath} Notice that coreflective embeddings are also given for instance by the inclusion of [[manifolds]] into [[formal manifolds]]. This is one way in which formal duals of simplicial rings manifest themselves as [[infinitesimal neighbourhoods]] of formal duals of plain rings. \hypertarget{higher_homotopy_groups}{}\subsubsection*{{Higher homotopy groups}}\label{higher_homotopy_groups} The higher [[homotopy groups]] $\pi_n(A)$ of a simplicial ring $A_\bullet$ are naturally [[modules]] over the ring $\pi_0(A)$ of connected components, so $A_\bullet$ is weakly [[contractible]], as a [[simplicial set]], iff $\pi_0(A)=0$. (Again this is a manifestation of the simplicial ring being just an infinitesimal thickening of its connected components.) Notice that $\pi_0(A)$ is equivalently the [[cokernel]] of $d_0-d_1 \colon A_1 \longrightarrow A_0$. Accordingly, any chain of [[face maps]] $A_n \longrightarrow A_0$ compose with the projection to $\pi_0(A)$ is independent of the choices. These maps \begin{displaymath} A_n \longrightarrow \pi_0(A) \end{displaymath} give a [[surjective]] map from $A_\bullet$ to the constant simplicial ring $\pi_0(A)$. (This is just the simplest piece of the [[Postnikov tower]].) If $\pi_0(A)\neq 0$ we can then compose with a surjective map to a constant simplicial field. \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} There is a [[model category]] structure on simplicial rings that presents $\infty$-rings. See [[model structure on simplicial T-algebras]] for more. We describe here the [[model category]] presentation of the [[(∞,1)-category]] of modules over simplicial rings. Let $A$ be a simplicial commutative algebra. Write $A SMod$ for the [[category]] which, with $A$ regarded as a [[monoid]] in the category $SAb$ of abelian [[simplicial group]]s is just the category of $A$-[[module]]s in $SAb$. This means that \begin{itemize}% \item objects are abelian [[simplicial group]]s $N$ equipped with an [[action]] [[morphism]] $A \otimes N \to N$ of simplicial abelian groups; \end{itemize} Equip $A SMod$ with the structure of a [[model category]] by setting: \begin{itemize}% \item a morphism $N_1\to N_2$ of $A$-[[modules]] is a weak equivalence resp. a fibration precisely if the underlying morphism of [[simplicial set]]s is a weak equivalence, resp. fibration, in the standard [[model structure on simplicial sets]]. \end{itemize} \textbf{Proposition} This defines a [[model category]] structure which is \begin{itemize}% \item [[cofibrantly generated model category|cofibrantly generated]]; \item [[proper model category|proper]]; \item [[cellular model category|cellular]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{simplicial_fields}{}\subsubsection*{{Simplicial fields}}\label{simplicial_fields} All simplicial [[fields]] are simplicially constant. This is because the composite $A_0\xrightarrow{s_0^n}A_n\xrightarrow{d_0^n}A_0$ is the identity, so $d_0^n$ is surjective, but all field homomorphisms are injective, so $d_0^n$ is an isomorphism. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial algebra]] \item [[model structure on simplicial T-algebras]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Introduction and survey includes \begin{itemize}% \item [[Bertrand Toën]], chapter 4 of \emph{Simplicial presheaves and derived algebraic geometry} , lecture at \href{http://www.crm.es/HigherCategories/}{Simplicial methods in higher categories} (\href{http://www.crm.cat/HigherCategories/hc1.pdf}{pdf}) \item [[Bertrand Toën]], \emph{Derived Algebraic Geometry} (\href{http://arxiv.org/abs/1401.1044}{arXiv:1401.1044}) \end{itemize} See [[model structure on simplicial algebras]] for references on the model structure discussed above. Some of the above material is taken from . Discussion in the context of [[homotopy theory]], hence for simplicial [[ring spectra]] includes \begin{itemize}% \item [[Paul Goerss]], [[Michael Hopkins]], \emph{Simplicial Structured Ring Spectra} (1999) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9216}{web}) \end{itemize} [[!redirects simplicial rings]] [[!redirects simplicial commutative ring]] [[!redirects simplicial commutative rings]] \end{document}