\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{simplicial_sets_as_spaces_built_of_simplices}{Simplicial sets as spaces built of simplices}\dotfill \pageref*{simplicial_sets_as_spaces_built_of_simplices} \linebreak \noindent\hyperlink{visualisation}{Visualisation}\dotfill \pageref*{visualisation} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{simplices_yoneda_embeddings}{$n$-simplices (Yoneda embeddings)}\dotfill \pageref*{simplices_yoneda_embeddings} \linebreak \noindent\hyperlink{cartesian_products_of_simplices}{Cartesian products of simplices}\dotfill \pageref*{cartesian_products_of_simplices} \linebreak \noindent\hyperlink{simplicial_complexes}{Simplicial complexes}\dotfill \pageref*{simplicial_complexes} \linebreak \noindent\hyperlink{directed_graphs}{Directed graphs}\dotfill \pageref*{directed_graphs} \linebreak \noindent\hyperlink{nerve_of_a_category}{Nerve of a category}\dotfill \pageref*{nerve_of_a_category} \linebreak \noindent\hyperlink{singular_simplicial_complex_of_a_topological_space}{Singular simplicial complex of a topological space}\dotfill \pageref*{singular_simplicial_complex_of_a_topological_space} \linebreak \noindent\hyperlink{bar_construction}{Bar construction}\dotfill \pageref*{bar_construction} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classifying_topos}{Classifying topos}\dotfill \pageref*{classifying_topos} \linebreak \noindent\hyperlink{simplicial_sets}{Simplicial sets}\dotfill \pageref*{simplicial_sets} \linebreak \noindent\hyperlink{cosimplicial_sets}{Cosimplicial sets}\dotfill \pageref*{cosimplicial_sets} \linebreak \noindent\hyperlink{as_models_in_homotopy_theory}{As models in homotopy theory}\dotfill \pageref*{as_models_in_homotopy_theory} \linebreak \noindent\hyperlink{relation_to_dendroidal_sets}{Relation to dendroidal sets}\dotfill \pageref*{relation_to_dendroidal_sets} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Simplicial sets generalize the idea of [[simplicial complexes]]: a \emph{simplicial set} is like a combinatorial space built up out of gluing abstract [[simplex|simplices]] to each other. Equivalently, it is an object equipped with a rule for how to consistently map the objects of the [[simplex category]] into it. More concretely, a simplicial set $S$ is a collection of [[sets]] $S_n$ for $n \in \mathbb{N}$, so that elements in $S_n$ are to be thought of as $n$-[[simplex|simplices]], equipped with a rule that says: \begin{itemize}% \item which $(n-1)$-simplices in $S_{n-1}$ are faces of which elements of $S_n$; \item which $(n+1)$-simplices are [[thin element|thin]] in that they are really just $n$-simplices regarded as degenerate $(n+1)$-simplices. \end{itemize} One of the main uses of simplicial sets is as combinatorial \emph{models} for the (weak) [[homotopy type]] of [[topological spaces]]. They can also be taken as models for [[∞-groupoids]]. This is encoded in the [[model structure on simplicial sets]]. For more reasons why simplicial sets see MathOverflow \href{http://mathoverflow.net/questions/58497/is-there-a-high-concept-explanation-for-why-simplicial-leads-to-homotopy-theor}{here}. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The quick abstract definition of a simplicial set goes as follows: \begin{defn} \label{}\hypertarget{}{} A \textbf{simplicial set} is a [[presheaf]] on the [[simplex category]] $\Delta$, that is, a [[functor]] $X : \Delta^{op} \to Sets$ from the [[opposite category]] of the [[simplex category]] to the category [[Set]] of [[sets]]; equivalently this a [[simplicial object]] in [[Set]]. Equipped with the standard [[homomorphisms]] of [[presheaf|presheaves]] as morphisms (namely [[natural transformation|natural transformations]] of the corresponding [[functors]]), simplicial sets form the category [[sSet]] (denoted both $SSet$ or $sSet$). \end{defn} Explicitly this means the following. \begin{defn} \label{}\hypertarget{}{} \textbf{(simplicial set)} A \textbf{simplicial set} $X \in sSet$ is \begin{itemize}% \item for each $n \in \mathbb{N}$ a [[set]] $X_n \in Set$ -- the \textbf{set of $n$-[[simplices]]}; \item for each [[injective map]] $\;\delta_i :\: [n-1] \to [n]\;$ of [[totally ordered sets]] ($[n] \coloneqq \{ 0 \lt 1 \lt \cdots \lt n \}$) a [[function]] $\;d_i :\: X_{n} \to X_{n-1}\;$ -- the $i$th \emph{[[face map]]} on $n$-simplices ($n \gt 0$ and $0 \leq i \leq n$); \item for each [[surjective map]] $\;\sigma_i :\: [n+1] \to [n]\;$ of totally ordered sets a function $\;s_i :\: X_{n} \to X_{n+1}\;$ -- the $i$th \emph{[[degeneracy map]]} on $n$-simplices ($n \geq 0$ and $0 \leq i \leq n$); \end{itemize} such that these functions satisfy the \emph{[[simplicial identities]]}. \end{defn} $\,$ \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \hypertarget{simplicial_sets_as_spaces_built_of_simplices}{}\subsubsection*{{Simplicial sets as spaces built of simplices}}\label{simplicial_sets_as_spaces_built_of_simplices} \begin{itemize}% \item The definition is to be understood from the point of view of [[space and quantity]]: a \textbf{simplicial set} is a space characterized by the fact that and how it may be \emph{probed} by mapping standard simplices into it: the set $S_n$ assigned by a simplicial set to the standard $n$-simplex $[n]$ is the \textbf{set of $n$-simplices} in this space, hence the way of mapping a standard $n$-simplex into this space. \item For $S$ a simplicial set, the \textbf{face map} \begin{displaymath} d_i \coloneqq S(\delta^i): S_n \rightarrow S_{n-1} \end{displaymath} is dual to the unique injection $\delta^i : [n-1] \rightarrow [n]$ in the category $\Delta$ whose image omits the element $i \in [n]$. \item Similarly, the \textbf{degeneracy map} \begin{displaymath} s_i \coloneqq S(\sigma^i) : S_n \rightarrow S_{n+1} \end{displaymath} is dual to the unique surjection $\sigma^i : [n+1] \rightarrow [n]$ in $\Delta$ such that $i \in [n]$ has two elements in its preimage. \item The maps $\delta^i$ and $\sigma^i$ satisfy certain obvious relations -- the [[simplicial identities]] -- dual to those spelled out at [[simplex category]]. \end{itemize} \hypertarget{visualisation}{}\subsubsection*{{Visualisation}}\label{visualisation} (based on [[cubical set]]) The \textbf{face maps} go from sets $S_{n+1}$ of $(n+1)$-dimensional simplices to the corresponding set $S_{n}$ of $n$-dimensional simplices and can be thought of as sending each simplex in the simplicial set to one of its faces, for instance for $n=1$ the set $S_2$ of 2-simplices would be sent in three different ways by three different face maps to the set of $1$-simplices, for instance one of the face maps would send \begin{displaymath} \left( \itexarray{ & & b \\ & \nearrow & \Downarrow^F & \searrow \\ a & & \rightarrow & & c } \right) \;\; \mapsto \;\; \left( \itexarray{ & & b \\ & \nearrow \\ a } \right) \end{displaymath} another one would send \begin{displaymath} \left( \itexarray{ & & b \\ & \nearrow & \Downarrow^F & \searrow \\ a & & \rightarrow & & c } \right) \;\; \mapsto \;\; \left( \itexarray{ a & & \rightarrow & & c } \right) \,. \end{displaymath} On the other hand, the \textbf{degeneracy maps} go the other way round and send sets $S_n$ of $n$-simplices to sets $S_{n+1}$ of $(n+1)$-simplices by regarding an $n$-simplex as a degenerate or ``thin'' $(n+1)$-simplex in the various different ways that this is possible. For instance, again for $n=1$, a degeneracy map may act by sending \begin{displaymath} \left( \itexarray{ a &\stackrel{f}{\to}& b } \right) \;\; \mapsto \;\; \left( \itexarray{ & & b \\ & \nearrow_f & \Downarrow^{Id} & \searrow^{Id} \\ a & & \stackrel{f}\to & & b } \right) \,. \end{displaymath} Notice the $Id$-labels, which indicate that the edges and faces labeled by them are ``[[thin element|thin]]'' in much the same way as an [[identity morphism]] is thin. They depend on lower dimensional features, (notice however that a simplicial set by itself is not equipped with any notion of composition of simplices, nor really, therefore, of identities. See [[quasicategory]] for a kind of simplicial set which does have such notions and [[simplicial T-complex]] for more on the intuitions behind this idea of ``thinness''). \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{simplices_yoneda_embeddings}{}\subsubsection*{{$n$-simplices (Yoneda embeddings)}}\label{simplices_yoneda_embeddings} Let $[n]$ denote the object of the [[simplex category]] $\Delta$ corresponding to the totally ordered set $\{ 0, 1, 2,\ldots, n\}$. Then the represented presheaf $\Delta(-, [n])$, typically written as $\Delta[n]$ is an example of a simplicial set. In particular we have $\Delta[n]_m=Hom_\Delta([m],[n])$ and hence $\Delta[n]_m$ is a finite set with $\binom{n+m+1}{n}$ elements. By the Yoneda lemma, the $n$-simplices of a simplicial set $X$ are in natural bijective correspondence to maps $\Delta[n] \rightarrow X$ of simplicial sets. \hypertarget{cartesian_products_of_simplices}{}\subsubsection*{{Cartesian products of simplices}}\label{cartesian_products_of_simplices} The non-degenerate [[simplices]] in the simplicial set which is the [[Cartesian product]] \begin{displaymath} \Delta[1] \times \Delta[2] \end{displaymath} of the [[1-simplex]] $\Delta[1]$ with the [[2-simplex]] $\Delta[2]$ (i.e. the canonical simplicial [[cylinder object]] over the [[2-simplex]]) is the simplicial set which looks as follows: \begin{quote}% graphics grabbed from \hyperlink{Friedman08}{Friedman 08, p. 33} \end{quote} \hypertarget{simplicial_complexes}{}\subsubsection*{{Simplicial complexes}}\label{simplicial_complexes} Every [[simplicial complex]] can be viewed a simplicial set (in several different ways). \begin{quote}% graphics grabbed form \href{https://arxiv.org/abs/1710.06129}{arXiv:1710.06129} \end{quote} \begin{quote}% graphics grabbed from Maletic, 2013 \end{quote} In particular any graph is thought of as being built of vertices and edges and so is a (1-dimensional) simplicial complex. Choosing a direction on the edges then gives a directed graph and that gives a simplicial set, as follows. \hypertarget{directed_graphs}{}\subsubsection*{{Directed graphs}}\label{directed_graphs} A [[directed graph]] (with loops and multiple edges allowed, i.e., a [[quiver]]) $E \rightrightarrows V$ is essentially the same thing as a 1-dimensional simplicial set, by taking $S_0 \coloneqq V$ to be the set of vertices and $S_1 \coloneqq E \uplus V$ to be the disjoint union of the set of edges with the set of vertices (the latter corresponding to the degenerate 1-simplices). \hypertarget{nerve_of_a_category}{}\subsubsection*{{Nerve of a category}}\label{nerve_of_a_category} If $C$ is a small category, the \textbf{nerve} of $C$ is a simplicial set which we denote $NC$. If we intepret the poset $[n]$ defined above as a category, we define the $n$-simplices of $NC$ to be the set of functors $[n] \rightarrow C$. Equivalently, the $0$-simplices of $NC$ are the objects of $C$, the $1$-simplices are the morphisms, and the $n$-simplices are strings of $n$ composable arrows in $C$. Face maps are given by composition (or omission, in the case of $d_0$ and $d_n$) and degeneracy maps are given by inserting identity arrows. \hypertarget{singular_simplicial_complex_of_a_topological_space}{}\subsubsection*{{Singular simplicial complex of a topological space}}\label{singular_simplicial_complex_of_a_topological_space} Recall from [[simplex category]] or [[geometric realization]] the standard functor $\Delta \to Top$ which sends $[n] \in \Delta$ to the standard topological $n$-simplex $\Delta^n$. This functor induces for every [[topological space]] $X$ the simplicial set \begin{displaymath} S X : [n] \mapsto Hom_{Top}(\Delta^n, X) \end{displaymath} called the \textbf{simplicial singular complex} of $X$. This simplicial set is always a [[Kan complex]] and may be regarded as the [[fundamental ∞-groupoid]] of $X$. Following up on the idea of `'thinness'', a singular simplex $f: \Delta^n \to X$ may be called \textbf{thin} if it factors through a [[retraction]] $r: \Delta^n \to \Lambda^{n-1}_i$ to some horn of $\Delta^n$, then the well known [[Kan complex|Kan]] condition on $S X$ can be strengthened to say that every horn in $S X$ has a \emph{thin} filler. This also helps to give some intuitive underpinning to the idea of [[thin element]] in this simplicial context. \hypertarget{bar_construction}{}\subsubsection*{{Bar construction}}\label{bar_construction} For the moment see \emph{[[bar construction]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{classifying_topos}{}\subsubsection*{{Classifying topos}}\label{classifying_topos} \hypertarget{simplicial_sets}{}\paragraph*{{Simplicial sets}}\label{simplicial_sets} The category of simplicial sets is a [[presheaf category]], and so in particular a [[Grothendieck topos]]. In fact, it is the [[classifying topos]] of the theory of ``intervals'', meaning [[totally ordered sets]] equipped with distinct top and bottom elements. Specifically, if $E$ is a topos containing such an interval $I$, then we obtain a functor $\Delta \to E$ sending $[n]$ to the subobject \begin{displaymath} \{ (x_1,x_2,\dots,x_n) \;|\; x_1 \le x_2 \le \dots \le x_n \} \hookrightarrow I^n \end{displaymath} The corresponding [[geometric realization]]/[[nerve]] [[adjunction]] $E \leftrightarrows Set^{\Delta^{op}}$ is the [[geometric morphism]] which classifies $I$. In particular, the generic such interval is the simplicial 1-simplex $\Delta^1$; see [[generic interval]] for more. The usual geometric realization into [[topological spaces]] cannot be obtained in this way precisely, since [[Top]] is not a topos. However, there are [[Top]]-like categories which are toposes, such as [[Johnstone's topological topos]]. \hypertarget{cosimplicial_sets}{}\paragraph*{{Cosimplicial sets}}\label{cosimplicial_sets} Similarly, also the category $Set^{\Delta}$ of cosimplicial sets is a classifying topos: for inhabited [[linear orders]]. See at \emph{[[classifying topos]]} the section \emph{\href{http://ncatlab.org/nlab/show/classifying+topos#ForLinearOrders}{For (inhabited) linear orders}}. \hypertarget{as_models_in_homotopy_theory}{}\subsubsection*{{As models in homotopy theory}}\label{as_models_in_homotopy_theory} (\ldots{}) [[homotopy theory]] (\ldots{}) [[Kan complex]] (\ldots{}) [[quasi-category]] (\ldots{}) \hypertarget{relation_to_dendroidal_sets}{}\subsubsection*{{Relation to dendroidal sets}}\label{relation_to_dendroidal_sets} For the moment see at \emph{[[dendroidal set]]} the section \hyperlink{http://ncatlab.org/nlab/show/dendroidal+set#RelationToSimplicialSets}{Relation to simplicial sets} \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} \begin{itemize}% \item A [[symmetric set]] is a simplicial set equipped with additional \emph{transposition maps} $t^n_i: X_n \to X_n$ for $i=0,\ldots,n-1$. These transition maps generate an [[action]] of the [[symmetric group]] on $X_n$ and satisfy certain commutation relations with the face and degeneracy maps. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial map]] \item [[simplicial object]] \begin{itemize}% \item \textbf{simplicial set} \item [[pointed simplicial set]] \item [[simplicial object in an (∞,1)-category]] \end{itemize} \item [[semi-simplicial object]] \begin{itemize}% \item [[semisimplicial set]] \end{itemize} \item [[simplicial homotopy theory]] \item [[simplicial group]], [[reduced simplicial set]] \item [[bisimplicial set]] \item [[symmetric set]], [[cyclic set]], [[skew-simplicial set]] \item [[globular set]], [[cubical set]], [[cellular set]], [[dendroidal set]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A pedagogical introduction to simplicial sets is \begin{itemize}% \item Greg Friedman, \emph{An elementary illustrated introduction to simplicial sets} (\href{http://arxiv.org/abs/0809.4221}{arXiv:0809.4221}) \end{itemize} A very clear and explicit exposition on the basics of simplicial sets is \begin{itemize}% \item [[Emily Riehl]], \emph{A leisurely introduction to simplicial sets}, 2008, 14 pages (\href{http://www.math.jhu.edu/~eriehl/ssets.pdf}{pdf}). \end{itemize} Another clear exposition is in the classic \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], [[Calculus of fractions and homotopy theory]]. \end{itemize} A useful (if old) survey article is: \begin{itemize}% \item Edward B. Curtis, \emph{Simplicial homotopy theory}, Advances in Math., \textbf{6} (1971) 107 -- 209 \href{http://www.ams.org/mathscinet-getitem?mr=279808}{MR279808} \end{itemize} More advanced treatments include \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]}, Progress in Mathematics, Birkh\"a{}user (1996) \end{itemize} Some more facts about homotopical aspects of simplicial sets are discussed in section 2 of \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} category: topology [[!redirects simplicial sets]] [[!redirects cosimplicial set]] [[!redirects cosimplicial sets]] [[!redirects face map]] [[!redirects boundary map]] [[!redirects degeneracy map]] [[!redirects face maps]] [[!redirects boundary maps]] [[!redirects degeneracy maps]] category : simplicial object \end{document}