\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{simplicial skeleton} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \begin{quote}% This entry is about the notion of (co)skeleta of [[simplicial sets]]. For the notion of skeleton of a [[category]] see at \emph{[[skeleton]]}. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{compatibility_with_kan_conditions}{Compatibility with Kan conditions}\dotfill \pageref*{compatibility_with_kan_conditions} \linebreak \noindent\hyperlink{Truncation}{Truncation and Postnikov towers}\dotfill \pageref*{Truncation} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $\Delta$ the [[simplex category]] write $\Delta_{\leq n}$ for its [[full subcategory]] on the objects $[0], [1], \cdots, [n]$. The inclusion $\Delta|_{\leq n} \hookrightarrow \Delta$ induces a truncation functor \begin{displaymath} tr_n : sSet = [\Delta^{op}, Set] \to [\Delta_{\leq n}^{op},Set] \end{displaymath} that takes a [[simplicial set]] and restricts it to its degrees $\leq n$. This functor has a [[left adjoint]], given by left [[Kan extension]] \begin{displaymath} sk_n \;\colon\; [\Delta_{\leq n},Set] \to SSet \end{displaymath} called the $n$-\textbf{skeleton} and a [[right adjoint]], given by right [[Kan extension]] \begin{displaymath} cosk_n \;\colon\; [\Delta_{\leq n},Set] \to SSet \end{displaymath} called the $n$-\textbf{coskeleton}. \begin{displaymath} ( sk_n \dashv tr_n \dashv cosk_n) \;\; \colon \;\; sSet_{\leq n} \stackrel{\overset{sk_n}{\longrightarrow}}{\stackrel{\overset{tr_n}{\longleftarrow}}{\underset{cosk_n}{\longrightarrow}}} sSet \,. \end{displaymath} The $n$-skeleton produces a simplicial set that is freely filled with degenerate simplices above degree $n$. Write \begin{displaymath} \mathbf{sk}_n := sk_n \circ tr_n: sSet \to sSet \end{displaymath} and \begin{displaymath} \mathbf{cosk}_n := cosk_n \circ tr_n: sSet \to sSet \end{displaymath} for the composite functors. Often by slight abuse of notation we suppress the boldface and just write $sk_n : sSet \to sSet$ and $cosk_n : sSet \to sSet$. these in turn form an [[adjunction]] \begin{displaymath} ( \mathbf{sk}_n \dashv \mathbf{cosk}_n) \;\; : \;\; sSet \stackrel{\leftarrow}{\to} sSet \,. \end{displaymath} So the $k$-coskeleton of a simplicial set $X$ is given by the formula \begin{displaymath} \mathbf{cosk}_k X : [n] \mapsto Hom_{sSet}(\mathbf{sk}_k \Delta[n], X) \,. \end{displaymath} Simplicial sets isomorphic to objects in the image of $cosk_n$ are called \textbf{$n$-coskeletal} simplicial sets. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} For $X \in$ [[sSet]], the following are equivalent: \begin{itemize}% \item $X$ is $n$-coskeletal; \item on $X$ the unit $X \to \mathbf{cosk}_n(X)$ of the adjunction is an [[isomorphism]]; \item the map \begin{displaymath} X_k = Hom(\Delta[k], X) \stackrel{tr_n}{\to} Hom(tr_n(\Delta[k]), tr_n(X)) \end{displaymath} is a bijection for all $k \gt n$ \item for $k \gt n$ and every morphism $\partial\Delta[k] \to X$ from the [[boundary of a simplex|boundary]] of the $k$-[[simplex]] there exists a \emph{unique} filler $\Delta[k] \to X$ \begin{displaymath} \itexarray{ \partial \Delta[k] &\to& X \\ \downarrow & \nearrow \\ \Delta[k] } \end{displaymath} \end{itemize} \end{prop} \begin{remark} \label{}\hypertarget{}{} So in particular if $X$ is an $n$-coskeletal [[Kan complex]], all its [[simplicial homotopy group]]s above degree $(n-1)$ are trivial. \end{remark} \hypertarget{compatibility_with_kan_conditions}{}\subsubsection*{{Compatibility with Kan conditions}}\label{compatibility_with_kan_conditions} \begin{prop} \label{}\hypertarget{}{} The coskeleton operations $\mathbf{cosk}_n$ preserve [[Kan complexes]]. $\mathbf{cosk}_n$ preserves those [[Kan fibrations]] between [[Kan complexes]] whose [[codomains]] have trivial [[homotopy group]] $\pi_n$. \end{prop} (\href{http://math.stackexchange.com/a/597990/58526}{Math.SE discussion}) \hypertarget{Truncation}{}\subsubsection*{{Truncation and Postnikov towers}}\label{Truncation} \begin{prop} \label{}\hypertarget{}{} For each $n \in \mathbb{N}$, the [[unit of an adjunction|unit of the adjunction]] \begin{displaymath} X \to \mathbf{cosk}_n(X) \end{displaymath} induces an [[isomorphism]] on all [[simplicial homotopy groups]] in degree $\lt n$. \end{prop} It follows from the above that for $X$ a [[Kan complex]], the sequence \begin{displaymath} X = \underset{\leftarrow}{\lim}\, cosk_n X \to \cdots \to cosk_{n+1} X \to cosk_{n} X \to \cdots \to * \end{displaymath} is a [[Postnikov tower]] for $X$. See also the discussion on \href{http://www.nd.edu/~wgd/Dvi/ObstructionTheoryForDiagrams.pdf#page=3}{p. 140, 141} of \href{http://www.nd.edu/~wgd/Dvi/ObstructionTheoryForDiagrams.pdf}{DwKan1984}. For the interpretation of this in terms of [[(n,1)-topos]]es inside the [[(∞,1)-topos]] [[∞Grpd]] see [[n-truncated object in an (∞,1)-category]], example . \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[nerve]] of a [[category]] is a 2-coskeletal simplicial set. \item A [[Kan complex]] that is $(n+1)$-coskeletal is equivalent to (the [[nerve]] of) an [[n-groupoid]]. \item A 0-coskeletal simplicial set $X$ is (-1)-[[truncated]] and hence either empty or a [[contractible]] [[Kan complex]] , $X \stackrel{\simeq}{\to} *$ that is the [[nerve]] $X = N(C)$ of a [[groupoid]] $C$ that has a [[equivalence of categories]] $C \simeq *$. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Postnikov tower]], [[Whitehead tower]] \item [[Eilenberg subcomplex]] \item [[adjoint modality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Standard textbook references are \begin{itemize}% \item [[Peter May]], \emph{Simplicial methods in algebraic topology} (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}) \item [[Paul Goerss]] and [[Rick Jardine]], 1999, \emph{[[Simplicial homotopy theory]]}, number 174 in Progress in Mathematics, Birkh\"a{}user. (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{ps}) \end{itemize} A classical article that amplifies the connection of the coskeleton operation to [[Postnikov towers]] is \begin{itemize}% \item [[William Dwyer]], [[Dan Kan]], \emph{An obstruction theory for diagrams of simplicial sets} (\href{http://www.nd.edu/~wgd/Dvi/ObstructionTheoryForDiagrams.pdf}{pdf}) \end{itemize} The [[level of a topos]]-structure of simplicial (co-)skeleta is discussed in \begin{itemize}% \item C. Kennett, [[Emily Riehl|E. Riehl]], M. Roy, M. Zaks, \emph{Levels in the toposes of simplicial sets and cubical sets} , JPAA \textbf{215} no.5 (2011) pp.949-961. (\href{http://arxiv.org/abs/1003.5944}{arXiv:1003.5944}) \end{itemize} [[!redirects coskeletal]] [[!redirects coskeleton]] [[!redirects simplicial coskeleton]] [[!redirects coskeleta]] [[!redirects skeleta]] [[!redirects simplicial skeleta]] \end{document}